Skip to main content
Log in

Structural, magnetic, magnetocaloric and critical exponents of oxide manganite La0.7Sr0.3Mn0.95Fe0.05O3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this scientific paper, structural, magnetic, magnetocaloric and critical exponent’s properties of La0.7Sr0.3Mn0.95Fe0.05O3 compound are briefly reviewed. The sample was synthesized by solid state reaction. X-ray powder diffraction analysis at room temperature showed that our sample is single phase without detection of any impurities. The refinement by the Rietveld method indicate that this compound crystallize in the orthorhombic structure with the space group Pnma. The variation of the magnetization versus temperature found that our perovskite has a single transition from the paramagnetic state (PM) to the ferromagnetic state (FM) with increasing temperature and the obtained Curie temperature is TC = 311 K. The obtained value of | \(\Delta {S}_{M}^{\text{MAX}}\)| is about 2.3Jkg−1 K−1 under an applied magnetic field of 5 T. The achieved results show that our compound is a promising candidate for magnetic refrigeration. Also, to discover the nature of the paramagnetic-ferromagnetic phase transition, for the La0.7Sr0.3Mn0.95Fe0.05O3we made an experimental study on the critical behaviour around the FM-PM transition. The value of the Curie temperature and the critical exponent’s β, γ and δ were determined using modified Arrott plots (MAP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Othmani, M. Bejar, E. Dhahri, E.K. Hlil, J. Alloys Compd. 475, 46 (2009)

    CAS  Google Scholar 

  2. S. Kossi, S. Ghodhbane, S. Mnefgi, J. Dhahri, E.K. Hlil, J. Magn. Magn. Mater. 395, 134–142 (2015)

    CAS  Google Scholar 

  3. A. Dhahri, M. Jemmali, E. Dhahri, E.K. Hlil, Dalton Trans. 44(12), 5620–5627 (2015)

    CAS  Google Scholar 

  4. Y. Sun, W. Tong, N. Liu, Y. Zhang, J. Magn. Magn. Mater. 238, 25–28 (2002)

    CAS  Google Scholar 

  5. M. Pekala, V. Drozd, J. Alloys Compd. 456, 30–33 (2008)

    CAS  Google Scholar 

  6. N.T.M. Duc et al., J. Alloys Compd. 807, 151694 (2019)

    CAS  Google Scholar 

  7. J.H. Belo, A.L. Pires, J.P. Araújo, A.M. Pereira, J. Mater. Res. 34, 134–157 (2019)

    CAS  Google Scholar 

  8. S.K. Giri et al., J. Phys. D. 52, 165302 (2019)

    CAS  Google Scholar 

  9. M.H. Phan, S.C. Yu, J. Magn. Magn. Mater. 308, 325 (2007)

    CAS  Google Scholar 

  10. A.M. Aliev, A.G. Gamzatov, K.I. Kamilov, A.R. Kaul, N.A. Babushkina, Appl. Phys. Lett. 101, 172401 (2012)

    Google Scholar 

  11. C. Martin, A. Maignan, M. Hervieu, B. Raveau, Phys. Rev. B 60, 12191 (1999)

    CAS  Google Scholar 

  12. M. Triki, E. Dhahri, E.K. Hlil, J. Solid State Chem. 201, 63–67 (2013)

    CAS  Google Scholar 

  13. S. Ghodhbane, E. Tka, J. Dhahri, E.K. Hlil, J. Alloys Compd. 600, 172–177 (2014)

    CAS  Google Scholar 

  14. A. Moreo, S. Yunoki, E. Dagotto, Science 283, 2034 (1999)

    CAS  Google Scholar 

  15. F. Ben Jemaa, S. Mahmood, M. Ellouze, E.K. Hlil, F. Halouani, J. Mater. Sci. 50, 620 (2015)

    CAS  Google Scholar 

  16. F. Ben Jemaa, S. Mahmood, M. Ellouze, E.K. Hlil, E. Halouani, Ceram. Int. 41, 8291 (2015)

    Google Scholar 

  17. S.C. Hong, S.J. Kim, E.J. Hahn, S.I. Park, C.S. Kim, IEEE Trans. Magn. 45, 6 (2009)

    Google Scholar 

  18. E.K. Abdel-Khalek, W.M. El-Meligy, E.A. Mohamed, T.Z. Amer, H.A. Sallam, J. Phys. Condens. Matter. 21, 026003 (2009)

    CAS  Google Scholar 

  19. H.Y. Hwang, S.-W. Cheong, P.G. Radaelli, M. Marezio, B. Batlogg, Phys. Rev. Lett. 914–917, 75 (1995)

    Google Scholar 

  20. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 32, 751–767 (1976)

    Google Scholar 

  21. S.V. Trukhanov, Peculiarities of the magnetic state in the system La0.70Sr0.30MnO3−γ (0 ≤ γ ≤ 0.25). J. Exp. Theor. Phys. 100(1), 95–105 (2005)

    CAS  Google Scholar 

  22. S.V. Trukhanov, A.V. Trukhanov, A.N. Vasilev, A. Maignan, H. Szymczak, Critical behavior of La0.825Sr0.175MnO2.912 anion-deficient manganite in the magnetic phase transition region. JETP Lett. 85(10), 507–512 (2007)

    CAS  Google Scholar 

  23. R. Cherif, S. Zouari, M. Ellouze, E.K. Hlil, F. Elhalouani, Phys. J. Plus 129, 83 (2014)

    Google Scholar 

  24. L.K. Leung, A.H. Morrish, B.J. Evans, Phys. Rev. B 13, 4069 (1976)

    CAS  Google Scholar 

  25. F. Damay, A. Maignan, N. Nguyen, B. Raveau, J. Solid State Chem. 124, 385 (1996)

    CAS  Google Scholar 

  26. N. Kemik, Y. Takamura, A. Navrotsky, J. Solid State Chem. 184, 2118–2123 (2011)

    CAS  Google Scholar 

  27. H.M. Rietveld, Appl. Cryst. 2, 65 (1967)

    Google Scholar 

  28. J. Rodrigez-Caarjaval, Full Prof (U B Saclay, France, 1998)

    Google Scholar 

  29. O.Z. Yanchevski, O.I.V. Yunov, A.G. Belows, Fiz. Nizk. Temp. 32, 184 (2006)

    Google Scholar 

  30. Q. Huang, Z.W. Li, J. Liand, C.K. Ong, J. Phys. Condens. Matter. 13, 4033 (2001)

    CAS  Google Scholar 

  31. M.I. Mendelson, J. Am. Ceram. Soc. 52, 443 (1969)

    CAS  Google Scholar 

  32. A. Guinier, in: X. Dunod (Ed.), Théorie et technique de la Radiocristallographie, (1964), Dunod: Paris, p. 482.

  33. S.K. Barik, C. Krishnamoorthi, R. Mahendiran, J. Magn. Magn. Mater. 323, 1015 (2011)

    CAS  Google Scholar 

  34. N. Kallel, S. Kallel, A. Hagaza, M. Oumezzine, Phys. B 404, 285 (2009)

    CAS  Google Scholar 

  35. S.M. Yusuf, M. Sahana, M.S. Hegde, K. Dörr, K.-H. Müller, Phys. Rev. B. 62, 1118 (2000)

    CAS  Google Scholar 

  36. R. Masrour, A. Jabar, H. Khlif, F. Ben Jemaa, M. Ellouze, E.K. Hlil, Solid State Commun. 268, 64–69 (2017)

    CAS  Google Scholar 

  37. B. Martinez, V. Laukhin, J. Fontcuberta, L. Pinsard, A. Revcolevschi, Phys. Rev. B 66, 054436 (2002)

    Google Scholar 

  38. S.V. Trukhanov, V.A. Khomchenko, L.S. Lobanovski, M.V. Bushinsky, D.V. Karpinsky, V.V. Fedotova, A. Adair, Crystal structure and magnetic properties of Ba-ordered manganites Ln0.70Ba0.30MnO3−δ (Ln = Pr, Nd). J. Exp. Theor. Phys. 103(3), 398–410 (2006)

    CAS  Google Scholar 

  39. A. Arrott, J.E. Noakes, Phys. Rev. Lett. 19, 786–789 (1967)

    CAS  Google Scholar 

  40. D.N.H. Nam, N.V. Dai, L.V. Hong, N.X. Phuc, S.C. Yu, M. Tachibana, E. Takayama-Muromachi, J. Appl. Phys. 103, 043905 (2008)

    Google Scholar 

  41. M. Baazaoui, S. Zemni, M. Boudard, H. Rahmouni, A. Gasmi, A. Selmi, M. Oumezzin, Int. J. Nanoelectron. Mater. 3, 23–26 (2010)

    Google Scholar 

  42. S.M. Yusuf, J.M. De Teresa, P.A. Algarabel, J. Blasco, M.R. Ibarra, A. Kumar, C. Ritter, Phys. B 401, 385–386 (2006)

    Google Scholar 

  43. R.D. McMichael, J.J. Ritter, R.D. Shull, Enhanced magnetocaloric effect in Gd3Ga5−xFexO12. J. Appl. Phys. 73, 6946 (1993)

    CAS  Google Scholar 

  44. S. Ghodhbane, A. Dhahri, N. Dhahri, E.K. Hlil, J. Dhahri, M. Alhabradi, M. Zaidi, J. Alloys Compd. 580, 558–656 (2013)

    CAS  Google Scholar 

  45. F. Ben Jemaa, S. Mahmood, M. Ellouze, E.K. Hlil, F. Halouani, I. Bsoul, M. Awawdeh, Structural, magnetic and magnetocaloric properties of La0.67Ba0.22Sr0.11Mn1–xFexO3 nanopowders. Solid State Sci. 37, 121–130 (2014)

    CAS  Google Scholar 

  46. R. Felhi, H. Omrani, M. Koubaa, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, J. Mater. Sci. 30, 12426–12436 (2019)

    CAS  Google Scholar 

  47. R.D. Mc Michael, J.J. Ritter, R.D. Shull, J. Appl. Phys. 73, 6946 (1993)

    CAS  Google Scholar 

  48. S. Tapas, I. Das, S. Banerjee, Phys. Lett. 91, 082511 (2007)

    Google Scholar 

  49. K. Ghosh, C.J. Lobb, R.L. Greene, S.G. Karabashev, D.A. Shulyatev, A.A. Arsenov, Y. Mukovskii, Phys. Rev. Lett. 81, 4740–4743 (1998)

    CAS  Google Scholar 

  50. Y. Motome, N. Furukawa, J. Phys. Soc. Jpn. 70, 1487–1490 (2001)

    CAS  Google Scholar 

  51. P. Zhang, P. Lampen, T.L. Phan, S.C. Yu, T.D. Thanh, N.H. Dan, V.D. Lam, H. Srikanth, M.H. Phan, J. Magn. Magn. Mater. 348, 146–153 (2013)

    CAS  Google Scholar 

  52. P.W. Anderson, H. Hasegawa, Phys. Rev. 100, 575–681 (1955)

    Google Scholar 

  53. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, London, 1971)

    Google Scholar 

  54. J.M.D. Coey, M. Viret, S. Von Molnar, Adv. Phys. 48, 167–293 (1999)

    CAS  Google Scholar 

  55. N. Moutis, I. Panagiotopoulos, M. Pissas, D. Niarxhos, Phys. Rev. B 59, 1129–1133 (1999)

    CAS  Google Scholar 

  56. B.K. Banerjee, Phys. Lett. 12, 16–17 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ellouze.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhahri, I., Ellouze, M., Mnasri, T. et al. Structural, magnetic, magnetocaloric and critical exponents of oxide manganite La0.7Sr0.3Mn0.95Fe0.05O3. J Mater Sci: Mater Electron 31, 12493–12501 (2020). https://doi.org/10.1007/s10854-020-03797-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03797-7

Navigation