Skip to main content
Log in

Metal–organic framework-derived C/Co/Co3O4 nanocomposites with excellent microwave absorption properties in low frequencies

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To improve the microwave absorption performance of functional coatings, metal–organic framework (MOF)-based nanocomposites were synthesized via a simple method, including a two-step cooling process. Derived from the ZIF-67 precursor, the nanocomposites consist of C, Co, and C3O4, and all the three chemical constituents are effectively combined in nanometer scale. By varying the heat treatment temperature, the structural architecture and chemical composition of the nanocomposites are carefully tailored to achieve the outstanding microwave absorption properties, in particular, for low frequencies. These properties are mainly boosted by the distinguished attenuation performance and an optimal impedance matching condition. When the heat treatment temperature is 800 °C, the sample (CCCO-800, CCCO for Carbon–Cobalt–Cobalt Oxide) possesses the best microwave absorption performance in this research. The maximum reflection loss (RL) of CCCO-800 can reach − 84.75 dB at 6.61 GHz, and the effective absorption bandwidth (RL < -10 dB) can be as wide as 8.5 GHz. With the absorber thickness ranging from 1.0 to 5.0 mm, the effective absorption bandwidth of CCCO-800 can cover one half of S band and the whole C, X, and Ku bands. These results show that with an appropriate process control, the nanocomposite absorber can achieve remarkable microwave absorption performance, which makes this type of nanocomposite promising as a functional coating for both civil and military applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X. Liu, C. Hao, L. He, C. Yang, Y. Chen, C. Jiang, R. Yu, Yolk–shell structured Co-C/Void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption. Nano Res. 11(8), 4169–4182 (2018). https://doi.org/10.1007/s12274-018-2006-z

    Article  CAS  Google Scholar 

  2. F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421

    Article  CAS  Google Scholar 

  3. Z. Chen, C. Xu, C. Ma, W. Ren, H.-M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013). https://doi.org/10.1002/adma.201204196

    Article  CAS  Google Scholar 

  4. J. Ma, M. Zhan, K. Wang, Ultralightweight silver nanowires hybrid polyimide composite foams for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces. 7(1), 563–576 (2015). https://doi.org/10.1021/am5067095

    Article  CAS  Google Scholar 

  5. B. Zhao, X. Guo, W. Zhao, J. Deng, G. Shao, B. Fan, Z. Bai, R. Zhang, Yolk–shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces. 8(42), 28917–28925 (2016). https://doi.org/10.1021/acsami.6b10886

    Article  CAS  Google Scholar 

  6. Y. Zhang, W. Hao, Absorbing material advance and influence to military stealth technology. New Chem. Mater. 40(1), 13–15 (2012)

    Google Scholar 

  7. J. Xu, W. Zhou, F. Luo, D. Zhu, J. Su, S. Jiang, Research progress on radar stealth technique and radar absorbing materials. Mater. Rev. 28(5), 46–49 (2014)

    CAS  Google Scholar 

  8. A. Wang, W. Wang, C. Long, W. Li, J. Guan, H. Gu, G. Xu, Facile preparation, formation mechanism and microwave absorption properties of porous carbonyl iron flakes. J. Mater. Chem. C 2(19), 3769–3776 (2014). https://doi.org/10.1039/C4TC00108G

    Article  CAS  Google Scholar 

  9. S. Motojima, Y. Noda, S. Hoshiya, Y. Hishikawa, Electromagnetic wave absorption property of carbon microcoils in 12–110 GHz region. J. Appl. Phys. 94(4), 2325–2330 (2003). https://doi.org/10.1063/1.1589603

    Article  CAS  Google Scholar 

  10. J. Joo, C.Y. Lee, High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers. J. Appl. Phys. 88(1), 513–518 (2000). https://doi.org/10.1063/1.373688

    Article  CAS  Google Scholar 

  11. X. Huang, J. Zhang, M. Lai, T. Sang, Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers. J. Alloy. Compd. 627, 367–373 (2015). https://doi.org/10.1016/j.jallcom.2014.11.235

    Article  CAS  Google Scholar 

  12. H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang, L.P. Wang, G. Ji, Z.J. Xu, Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11(1), 24 (2019). https://doi.org/10.1007/s40820-019-0255-3

    Article  CAS  Google Scholar 

  13. W. Liu, S. Tan, Z. Yang, G. Ji, Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces. 10(37), 31610–31622 (2018). https://doi.org/10.1021/acsami.8b10685

    Article  CAS  Google Scholar 

  14. Y. Zhang, X. Wang, M. Cao, Confinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 11(3), 1426–1436 (2018). https://doi.org/10.1007/s12274-017-1758-1

    Article  CAS  Google Scholar 

  15. Y. Ding, Z. Zhang, B. Luo, Q. Liao, S. Liu, Y. Liu, Y. Zhang, Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co3O4-nanosheets/reduced-graphene-oxide composite. Nano Res. 10(3), 980–990 (2017). https://doi.org/10.1007/s12274-016-1357-6

    Article  CAS  Google Scholar 

  16. X. Li, X. Yin, M. Han, C. Song, H. Xu, Z. Hou, L. Zhang, L. Cheng, Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 5(16), 4068–4074 (2017). https://doi.org/10.1039/C6TC05226F

    Article  CAS  Google Scholar 

  17. Z. Zhang, J. Tan, W. Gu, H. Zhao, J. Zheng, B. Zhang, G. Ji, Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application. Chem. Eng. J. 395, 125190 (2020). https://doi.org/10.1016/j.cej.2020.125190

    Article  CAS  Google Scholar 

  18. X. Liang, Z. Man, B. Quan, J. Zheng, W. Gu, Z. Zhang, G. Ji, Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12(1), 102 (2020). https://doi.org/10.1007/s40820-020-00432-2

    Article  Google Scholar 

  19. W.-L. Song, M.-S. Cao, Z.-L. Hou, X.-Y. Fang, X.-L. Shi, J. Yuan, High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl. Phys. Lett. 94(23), 233110 (2009). https://doi.org/10.1063/1.3152764

    Article  CAS  Google Scholar 

  20. Y.-H. Chen, Z.-H. Huang, M.-M. Lu, W.-Q. Cao, J. Yuan, D.-Q. Zhang, M.-S. Cao, 3D Fe3O4 nanocrystals decorating carbon nanotubes to tune electromagnetic properties and enhance microwave absorption capacity. J. Mater. Chem. A 3(24), 12621–12625 (2015). https://doi.org/10.1039/C5TA02782A

    Article  CAS  Google Scholar 

  21. M.-S. Cao, W.-L. Song, Z.-L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3), 788–796 (2010). https://doi.org/10.1016/j.carbon.2009.10.028

    Article  CAS  Google Scholar 

  22. X. Cui, X. Liang, J. Chen, W. Gu, G. Ji, Y. Du, Customized unique core-shell Fe2N@N-doped carbon with tunable void space for microwave response. Carbon 156, 49–57 (2020). https://doi.org/10.1016/j.carbon.2019.09.041

    Article  CAS  Google Scholar 

  23. B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang, G. Ji, Y. Guo, L. Zheng, Z.J. Xu, Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Func. Mater. 29(28), 1901236 (2019). https://doi.org/10.1002/adfm.201901236

    Article  CAS  Google Scholar 

  24. X. Liu, H. Guo, Q. Xie, Q. Luo, L.-S. Wang, D.-L. Peng, Enhanced microwave absorption properties in GHz range of Fe3O4/C composite materials. J. Alloy. Compd. 649, 537–543 (2015). https://doi.org/10.1016/j.jallcom.2015.07.084

    Article  CAS  Google Scholar 

  25. Y. Cheng, H. Zhao, H. Lv, T. Shi, G. Ji, Y. Hou, Lightweight and flexible cotton aerogel composites for electromagnetic absorption and shielding applications. Adv. Electron. Mater. 6(1), 1900796 (2020). https://doi.org/10.1002/aelm.201900796

    Article  CAS  Google Scholar 

  26. J. Yuan, Q. Liu, S. Li, Y. Lu, S. Jin, K. Li, H. Chen, H. Zhang, Metal organic framework (MOF)-derived carbonaceous Co3O4/Co microframes anchored on RGO with enhanced electromagnetic wave absorption performances. Synth. Met. 228, 32–40 (2017). https://doi.org/10.1016/j.synthmet.2017.03.020

    Article  CAS  Google Scholar 

  27. R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian, Z. Li, X. Han, P. Xu, Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 3(25), 13426–13434 (2015). https://doi.org/10.1039/C5TA01457C

    Article  CAS  Google Scholar 

  28. Q. Wu, J. Wang, H. Jin, T. Yan, G. Yi, X. Su, W. Dai, X. Wang, MOF-derived rambutan-like nanoporous carbon/nanotubes/Co composites with efficient microwave absorption property. Mater. Lett. 244, 138–141 (2019). https://doi.org/10.1016/j.matlet.2019.02.023

    Article  CAS  Google Scholar 

  29. D. Liu, R. Qiang, Y. Du, Y. Wang, C. Tian, X. Han, Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption. J. Colloid Interface Sci. 514, 10–20 (2018). https://doi.org/10.1016/j.jcis.2017.12.013

    Article  CAS  Google Scholar 

  30. X. Liang, B. Quan, Z. Man, B. Cao, N. Li, C. Wang, G. Ji, T. Yu, Self-assembly three-dimensional porous carbon networks for efficient dielectric attenuation. ACS Appl. Mater. Interfaces. 11(33), 30228–30233 (2019). https://doi.org/10.1021/acsami.9b08365

    Article  CAS  Google Scholar 

  31. X. Cui, X. Liang, W. Liu, W. Gu, G. Ji, Y. Du, Stable microwave absorber derived from 1D customized heterogeneous structures of Fe3N@C. Chem. Eng. J. 381, 122589 (2020). https://doi.org/10.1016/j.cej.2019.122589

    Article  CAS  Google Scholar 

  32. Y. Sun, N. Wang, H. Yu, X. Jiang, Metal–organic framework-based Fe/C@Co3O4 core–shell nanocomposites with outstanding microwave absorption properties in low frequencies. J. Mater. Sci. 55(17), 7304–7320 (2020). https://doi.org/10.1007/s10853-020-04521-w

    Article  CAS  Google Scholar 

  33. Y. Lü, Y. Wang, H. Li, Y. Lin, Z. Jiang, Z. Xie, Q. Kuang, L. Zheng, MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces. 7(24), 13604–13611 (2015). https://doi.org/10.1021/acsami.5b03177

    Article  CAS  Google Scholar 

  34. K. Wang, Y. Chen, R. Tian, H. Li, Y. Zhou, H. Duan, H. Liu, Porous Co–C core–shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces. 10(13), 11333–11342 (2018). https://doi.org/10.1021/acsami.8b00965

    Article  CAS  Google Scholar 

  35. T. Wu, Y. Liu, X. Zeng, T. Cui, Y. Zhao, Y. Li, G. Tong, Facile hydrothermal synthesis of Fe3O4/C core–shell nanorings for efficient low-frequency microwave absorption. ACS Appl. Mater. Interfaces. 8(11), 7370–7380 (2016). https://doi.org/10.1021/acsami.6b00264

    Article  CAS  Google Scholar 

  36. L. Huang, J. Li, Y. Li, X. He, Y. Yuan, Fibrous composites with double-continuous conductive network for strong low-frequency microwave absorption. Ind. Eng. Chem. Res. 58(27), 11927–11938 (2019). https://doi.org/10.1021/acs.iecr.9b01277

    Article  CAS  Google Scholar 

  37. R. Qiang, Y. Du, D. Chen, W. Ma, Y. Wang, P. Xu, J. Ma, H. Zhao, X. Han, Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67). J. Alloy. Compd. 681, 384–393 (2016). https://doi.org/10.1016/j.jallcom.2016.04.225

    Article  CAS  Google Scholar 

  38. H.T. Zhu, J. Luo, J.K. Liang, G.H. Rao, J.B. Li, J.Y. Zhang, Z.M. Du, Synthesis and magnetic properties of antiferromagnetic Co3O4 nanoparticles. Phys. B 403(18), 3141–3145 (2008). https://doi.org/10.1016/j.physb.2008.03.024

    Article  CAS  Google Scholar 

  39. M. Salavati-Niasari, A. Khansari, Synthesis and characterization of Co3O4 nanoparticles by a simple method. C. R. Chim. 17(4), 352–358 (2014). https://doi.org/10.1016/j.crci.2013.01.023

    Article  CAS  Google Scholar 

  40. X. Wang, J. Zhou, H. Fu, W. Li, X. Fan, G. Xin, J. Zheng, X. Li, MOF derived catalysts for electrochemical oxygen reduction. J. Mater. Chem. A 2(34), 14064–14070 (2014). https://doi.org/10.1039/C4TA01506A

    Article  CAS  Google Scholar 

  41. Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, P. Xu, Shell Thickness-dependent microwave absorption of core–shell Fe3O4@C composites. ACS Appl. Mater. Interfaces. 6(15), 12997–13006 (2014). https://doi.org/10.1021/am502910d

    Article  CAS  Google Scholar 

  42. Z. Fang, C. Li, J. Sun, H. Zhang, J. Zhang, The electromagnetic characteristics of carbon foams. Carbon 45(15), 2873–2879 (2007). https://doi.org/10.1016/j.carbon.2007.10.013

    Article  CAS  Google Scholar 

  43. Q. Liu, D. Zhang, T. Fan, Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl. Phys. Lett. 93(1), 013110 (2008). https://doi.org/10.1063/1.2957035

    Article  CAS  Google Scholar 

  44. P.C.P. Watts, W.-K. Hsu, A. Barnes, B. Chambers, High permittivity from defective multiwalled carbon nanotubes in the X-band. Adv. Mater. 15(7–8), 600–603 (2003). https://doi.org/10.1002/adma.200304485

    Article  CAS  Google Scholar 

  45. B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, J. Yuan, Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014). https://doi.org/10.1002/adma.201400108

    Article  CAS  Google Scholar 

  46. J.-C. Shu, M.-S. Cao, M. Zhang, X.-X. Wang, W.-Q. Cao, X.-Y. Fang, M.-Q. Cao, Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Func. Mater. 30(10), 1908299 (2020). https://doi.org/10.1002/adfm.201908299

    Article  CAS  Google Scholar 

  47. M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, J. Yuan, Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14(29), 1800987 (2018). https://doi.org/10.1002/smll.201800987

    Article  CAS  Google Scholar 

  48. L. Huang, C. Chen, X. Huang, S. Ruan, Y.-J. Zeng, Enhanced electromagnetic absorbing performance of MOF-derived Ni/NiO/Cu@C composites. Compos. B Eng. 164, 583–589 (2019). https://doi.org/10.1016/j.compositesb.2019.01.081

    Article  CAS  Google Scholar 

  49. T.S. Bird, Definition and misuse of return loss. IEEE Antenn Propag M 51(2), 166–167 (2009). https://doi.org/10.1109/Map.2009.5162049

    Article  Google Scholar 

  50. Y. Liu, K. Zhao, M.G.B. Drew, Y. Liu, A theoretical and practical clarification on the calculation of reflection loss for microwave absorbing materials. AIP Adv. 8(1), 015223–015238 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Xuzhou Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2738 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Jia, H., Liu, J. et al. Metal–organic framework-derived C/Co/Co3O4 nanocomposites with excellent microwave absorption properties in low frequencies. J Mater Sci: Mater Electron 31, 11700–11713 (2020). https://doi.org/10.1007/s10854-020-03721-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03721-z

Navigation