Skip to main content
Log in

A novel composite gold/gold nanoparticles/carbon nanotube electrode for frequency-stable micro-electrical impedance tomography

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel electrode structure is introduced for micro-electrical impedance tomography. The composite electrode structure is made up of gold nanoparticles (AuNPs) and carbon nanotube (CNT) which are deposited on the surface. The nanostructure-based composition of electrodes improved the effective surface area, increased the double-layer capacitance of electrodes, and enhanced the electron transfer on the electrode–analyte interface. The proposed electrodes exhibit lower frequency-dependent electrical properties in impedance measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Hong, K. Lee, U. Ha, H. Kim, Y. Lee, Y. Kim, H.-J. Yoo, A 4.9 mΩ-sensitivity mobile electrical impedance tomography IC for early breast-cancer detection system. IEEE J. Solid-State Circuits 50(1), 245–257 (2014)

    Google Scholar 

  2. T.A. Khan, S.H. Ling, Review on electrical impedance tomography: artificial intelligence methods and its applications. Algorithms 12(5), 88 (2019)

    Google Scholar 

  3. B. Lobo, C. Hermosa, A. Abella, F. Gordo, Electrical impedance tomography. Ann. Transl. Med. 6(2), R99 (2018)

    Google Scholar 

  4. J.-y. Hu, J.-g. Hu, D.-l. Lan, J.-l. Ming, Y.-t. Zhou, Y.-w. Li, in Corrosion evaluation of the grounding grid in transformer substation using electrical impedance tomography technology, (IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, 2017; IEEE: 2017), pp. 5033–5038.

  5. D. Santos, P. Faia, F. Garcia, M. Rasteiro, Oil/water stratified flow in a horizontal pipe: simulated and experimental studies using EIT. J. Petrol. Sci. Eng. 174, 1179–1193 (2019)

    CAS  Google Scholar 

  6. X. Qin, C. Ji, Z. Wang, P. Wang. in Image reconstruction and simulation of fluid flow patterns in pipeline based on Electrical Impedance Tomography algorithm, (2018 International Symposium on Computer, Consumer and Control (IS3C), 2018; IEEE: 2018) pp. 262–265.

  7. R.P. Henderson, J.G. Webster, An impedance camera for spatially specific measurements of the thorax. IEEE Trans. Biomed. Eng. 3, 250–254 (1978)

    Google Scholar 

  8. D.C. Barber, B.H. Brown, L. Freeston, Imaging spatial distributions of resistivity using applied potential tomography—APT, Information Processing in Medical Imaging (Springer, New York, 1984), pp. 446–462

    Google Scholar 

  9. B. Brown, Tissue impedance methods, imaging with non-ionising radiation, Jackson DF (Surrey University Press, Guildford, 1983)

    Google Scholar 

  10. L. Borcea, Electrical impedance tomography. Inverse Prob. 18(6), R99 (2002)

    Google Scholar 

  11. R.A. Borsoi, J.C.C. Aya, G.H. Costa, J.C.M. Bermudez, Super-resolution reconstruction of electrical impedance tomography images. Comput. Electr. Eng. 69, 1–13 (2018)

    Google Scholar 

  12. R.K. Meena, S.K. Pahuja, A.B. Queyam, A. Sengupta, Electrical impedance tomography: a real-time medical imaging technique, in Handbook of research on advanced concepts in real-time image and video processing, ed. by M. Anwar, A. Khosla, R. Kapoor (IGI Global, Pennsylvania, 2018), pp. 130–152

    Google Scholar 

  13. C. Tan, N.-N. Wang, F. Dong, Oil–water two-phase flow pattern analysis with ERT based measurement and multivariate maximum Lyapunov exponent. J. Central South Univ. 23(1), 240–248 (2016)

    Google Scholar 

  14. C. Tan, Y. Xu, F. Dong, Determining the boundary of inclusions with known conductivities using a Levenberg–Marquardt algorithm by electrical resistance tomography. Meas. Sci. Technol. 22(10), 104005 (2011)

    Google Scholar 

  15. C. Tan, F. Dong, Modification to mass flow rate correlation in oil–water two-phase flow by a V-cone flow meter in consideration of the oil–water viscosity ratio. Meas. Sci. Technol. 21(4), 045403 (2010)

    Google Scholar 

  16. C. Tan, F. Dong, M. Wu, Identification of gas/liquid two-phase flow regime through ERT-based measurement and feature extraction. Flow Meas. Instrum. 18(5–6), 255–261 (2007)

    CAS  Google Scholar 

  17. S. Ren, M. Soleimani, Y. Xu, F. Dong, Inclusion boundary reconstruction and sensitivity analysis in electrical impedance tomography. Inverse Probl. Sci. Eng. 26(7), 1037–1061 (2018)

    Google Scholar 

  18. M. Jehl, A. Dedner, T. Betcke, K. Aristovich, R. Klöfkorn, D. Holder, A fast parallel solver for the forward problem in electrical impedance tomography. IEEE Trans. Biomed. Eng. 62(1), 126–137 (2014)

    Google Scholar 

  19. T. K. Bera, Studies on Multifrequency Multifunction Electrical Impedance Tomography (MfMf-EIT) to Improve Bio-Impedance Imaging, 2018

  20. D. Calvetti, P.J. Hadwin, J. Huttunen, D. Isaacson, J.P. Kaipio, D. McGivney, E. Somersalo, J. Volzer, Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results. Inverse Probl. Imaging 9(3), 749–766 (2015)

    Google Scholar 

  21. S. Ren, Y. Wang, G. Liang, F. Dong, A robust inclusion boundary reconstructor for electrical impedance tomography with geometric constraints. IEEE Trans. Instrum. Meas. 68(3), 762–773 (2018)

    Google Scholar 

  22. H.P. Schwan, The practical success of impedance techniques from an historical perspective. Ann. N. Y. Acad. Sci. 873(1), 1–12 (1999)

    Google Scholar 

  23. J. Wegener, C.R. Keese, I. Giaever, Electric cell–substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp. Cell Res. 259(1), 158–166 (2000)

    CAS  Google Scholar 

  24. T.S. Hug, Biophysical methods for monitoring cell-substrate interactions in drug discovery. Assay Drug Dev. Technol. 1(3), 479–488 (2003)

    CAS  Google Scholar 

  25. L. Huang, L. Xie, J.M. Boyd, X.-F. Li, Cell-electronic sensing of particle-induced cellular responses. Analyst 133(5), 643–648 (2008)

    CAS  Google Scholar 

  26. B.J. Sanghavi, A.K. Srivastava, Simultaneous voltammetric determination of acetaminophen and tramadol using Dowex50wx2 and gold nanoparticles modified glassy carbon paste electrode. Anal. Chim. Acta 706(2), 246–254 (2011)

    CAS  Google Scholar 

  27. A. Afkhami, H. Bagheri, H. Khoshsafar, M. Saber-Tehrani, M. Tabatabaee, A. Shirzadmehr, Simultaneous trace-levels determination of Hg(II) and Pb(II) ions in various samples using a modified carbon paste electrode based on multi-walled carbon nanotubes and a new synthesized Schiff base. Anal. Chim. Acta 746, 98–106 (2012)

    CAS  Google Scholar 

  28. A. Afkhami, H. Ghaedi, T. Madrakian, M. Ahmadi, H. Mahmood-Kashani, Fabrication of a new electrochemical sensor based on a new nano-molecularly imprinted polymer for highly selective and sensitive determination of tramadol in human urine samples. Biosens. Bioelectron. 44, 34–40 (2013)

    CAS  Google Scholar 

  29. K. Gong, Y. Yan, M. Zhang, L. Su, S. Xiong, L. Mao, Electrochemistry and electroanalytical applications of carbon nanotubes: a review. Anal. Sci. 21(12), 1383–1393 (2005)

    CAS  Google Scholar 

  30. T.-L. Lu, Y.-C. Tsai, Sensitive electrochemical determination of acetaminophen in pharmaceutical formulations at multiwalled carbon nanotube-alumina-coated silica nanocomposite modified electrode. Sens. Actuators B 153(2), 439–444 (2011)

    CAS  Google Scholar 

  31. J.J. Gooding, Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim. Acta 50(15), 3049–3060 (2005)

    CAS  Google Scholar 

  32. M. Trojanowicz, Analytical applications of carbon nanotubes: a review. TrAC Trends Anal. Chem. 25(5), 480–489 (2006)

    CAS  Google Scholar 

  33. T. Madrakian, E. Haghshenas, A. Afkhami, Simultaneous determination of tyrosine, acetaminophen and ascorbic acid using gold nanoparticles/multiwalled carbon nanotube/glassy carbon electrode by differential pulse voltammetric method. Sens. Actuators B 193, 451–460 (2014)

    CAS  Google Scholar 

  34. X. Wang, X. Zhang, Electrochemical co-reduction synthesis of graphene/nano-gold composites and its application to electrochemical glucose biosensor. Electrochim. Acta 112, 774–782 (2013)

    CAS  Google Scholar 

  35. P. Kannan, S.A. John, Determination of nanomolar uric and ascorbic acids using enlarged gold nanoparticles modified electrode. Anal. Biochem. 386(1), 65–72 (2009)

    CAS  Google Scholar 

  36. P. Daneshgar, P. Norouzi, A.A. Moosavi-Movahedi, M.R. Ganjali, E. Haghshenas, F. Dousty, M. Farhadi, Fabrication of carbon nanotube and dysprosium nanowire modified electrodes as a sensor for determination of curcumin. J. Appl. Electrochem. 39(10), 1983 (2009)

    CAS  Google Scholar 

  37. Z.A. Alothman, N. Bukhari, S.M. Wabaidur, S. Haider, Simultaneous electrochemical determination of dopamine and acetaminophen using multiwall carbon nanotubes modified glassy carbon electrode. Sens. Actuators B 146(1), 314–320 (2010)

    CAS  Google Scholar 

  38. S. Trasatti, O. Petrii, Real surface area measurements in electrochemistry. J. Electroanal. Chem. 327(1–2), 353–376 (1992)

    CAS  Google Scholar 

  39. T. Sagara, K. Niwa, A. Sone, C. Hinnen, K. Niki, Redox reaction mechanism of cytochrome c at modified gold electrodes. Langmuir 6(1), 254–262 (1990)

    CAS  Google Scholar 

  40. X. Kang, J. Wang, H. Wu, I.A. Aksay, J. Liu, Y. Lin, Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens. Bioelectron. 25(4), 901–905 (2009)

    CAS  Google Scholar 

  41. A. Tlili, A. Abdelghani, S. Ameur, N. Jaffrezic-Renault, Impedance spectroscopy and affinity measurement of specific antibody–antigen interaction. Mater. Sci. Eng. C 26(2–3), 546–550 (2006)

    CAS  Google Scholar 

Download references

Acknowledgements

This article has been extracted from thesis written by Ms. Zahra Rezanejad Gatabi in School of Medicine. Shahid Beheshti University of Medical Sciences (Registration No. M 374).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pezhman Sasanpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 921 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezanejad Gatabi, Z., Mohammadpour, R., Rezanejad Gatabi, J. et al. A novel composite gold/gold nanoparticles/carbon nanotube electrode for frequency-stable micro-electrical impedance tomography. J Mater Sci: Mater Electron 31, 10803–10810 (2020). https://doi.org/10.1007/s10854-020-03631-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03631-0

Navigation