Skip to main content
Log in

Inkjet printing porous graphene/silver flexible electrode with enhanced electrochemical performance based on vapor phase reduction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, inkjet printing of porous graphene/silver composite with low temperature vapor phase reduction was studied. Silver precursor and graphene oxide (GO) with a low weight ratio were used as ink for inkjet printing into a film. After vapor phase reduction, the inserted silver nanoparticles between reduced graphene oxide (RGO) layers acted as physical separators to prevent agglomeration of the RGO and reduce the Van Der Waals force between graphene sheets. The fabricated RGO/Ag electrode presented a high electrical conductivity of 2.9 × 105 S/m, and could keep stable after multiple bending. Meanwhile, the reducing agent vapor entered the interior of the RGO during the vapor reducing process, which generated porous channels in the RGO/Ag electrode. The porous channels could facilitate the penetration of the electrolyte into the graphene/silver electrode, resulting in a good electrochemical performance with a specific capacitance of 60.6 mF/cm2 at a scan rate of 5 mV/s, which greatly improves the property compared with the previous reports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Avouris, C. Dimitrakopoulos, Mater. Today 15, 86–97 (2012)

    CAS  Google Scholar 

  2. R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, Nat. Mater. 14, 271–279 (2015)

    CAS  Google Scholar 

  3. W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Crit. Rev. Solid State Mater. Sci. 35, 52–71 (2010)

    CAS  Google Scholar 

  4. T. Wassmann, A.P. Seitsonen, A.M. Saitta, M. Lazzeri, F. Mauri, J. Am. Chem. Soc. 132, 3440–3451 (2010)

    CAS  Google Scholar 

  5. D.S.L. Abergel, V. Apalkov, J. Berashevich, K. Zieglar, T. Chakraborty, Adv. Phys. 59, 261–482 (2010)

    CAS  Google Scholar 

  6. L. Zhang, Z.J. Zhang, C.Z. He, L.M. Dai, J. Liu, L.X. Wang, ACS Nano 8, 6663–6670 (2014)

    CAS  Google Scholar 

  7. T. Ma, H.L. Gao, H.P. Cong, H.B. Yao, L. Wu, Z.Y. Yu, S.M. Chen, S.H. Yu, Adv. Mater. 30, 1706435 (2018)

    Google Scholar 

  8. S.T. Han, Y. Zhou, C.D. Wang, L.F. He, W.J. Zhang, V.A.L. Roy, Adv. Mater. 25, 872–877 (2013)

    CAS  Google Scholar 

  9. H. Zhang, M. Chhowalla, Z. Liu, Chem. Soc. Rev. 47, 3015–3017 (2018)

    CAS  Google Scholar 

  10. W.Y. Xu, J.W. Zhao, L. Qian, X.Y. Han, L.Z. Wu, W.C. Wu, M.S. Song, L. Zhou, W.M. Su, C. Wang, S.H. Nie, Z. Cui, Nanoscale 6, 1589–1595 (2014)

    CAS  Google Scholar 

  11. L. Liang, C.Z. Jiang, W. Wu, Nanoscale 11, 7041–7061 (2019)

    CAS  Google Scholar 

  12. A. Kamyshny, S. Magdassi, Small 10, 3515–3535 (2014)

    CAS  Google Scholar 

  13. W.H. Antink, Y. Choi, K.D. Seong, Kim J m, Piao Y Z. Adv. Mater. Interfaces 5, 1701212 (2018)

    Google Scholar 

  14. Y.M. Seo, H.J. Cho, H.S. Jang, W. Jang, J.Y. Lim, Y. Jang, T. Gu, J.Y. Choi, D. Whang, Adv. Electron. Mater. 4, 1700622 (2018)

    Google Scholar 

  15. G.B. Pour, L.F. Aval, M. Mirzaee, J. Mater. Sci.-Mater. Elecron. 29, 17432–17437 (2018)

    Google Scholar 

  16. L. Liu, Y. Feng, W. Wu, J. Power Sources 410, 69–77 (2019)

    Google Scholar 

  17. J. Du, C. Zheng, W. Lv, Y. Deng, Z. Pan, F. Kang, Q.H. Yang, Adv. Mater. Interfaces 4, 1700004 (2017)

    Google Scholar 

  18. M. Ciszewski, E. Szatkowska, A. Koszorek, M. Majka, J. Mater. Sci.-Mater. Electron. 28, 4897–4903 (2017)

    CAS  Google Scholar 

  19. J.Z. Sun, B. Cui, F.Q. Chu, C.H. Yun, M. He, L.H. Li, Y.L. Song, Nanomaterials 8, 528 (2018)

    Google Scholar 

  20. C. Couly, M. Alhabeb, K.L. Van Aken, N. Kurra, L. Gomes, S.A.M. Navarro, B. Anasori, H.N. Alshareef, Y. Gogotis, Adv. Electron. Mater. 4, 1700339 (2018)

    Google Scholar 

  21. F.Y. Chen, J.M. Ying, Y.F. Wang, S.Y. Du, Z.P. Liu, Q. Huang, Carbon 96, 836–842 (2016)

    CAS  Google Scholar 

  22. M. Liu, C.Y. Li, L. Liu, Y. Ye, D. Dastan, H. Garmestani, Mater. Sci. Technol. 36, 284–292 (2020)

    CAS  Google Scholar 

  23. L. Liu, Y. Sheng, M. Liu, M. Dienwiebel, Z. Zhang, D. Dastan, Tribol. Int. 140, 105727 (2019)

    CAS  Google Scholar 

  24. K. He, Z.T. Zeng, A.W. Chen, G.M. Zeng, R. Xiao, P. Xu, Z.Z. Huang, J.B. Shi, L. Hu, J.Q. Chen, Small 14, 1800871 (2018)

    Google Scholar 

  25. S. Chen, Y. Wei, X. Yuan, Y. Lin, Liu l. J. Mater. Chem. C 4, 4304–4311 (2016)

    CAS  Google Scholar 

  26. S.T. Hsiao, H.W. Tien, W.H. Liao, Y.S. Wang, S.M. Li, C.C. MMa, Y.H. Yu, W.P.J. Chuang, Mater. Chem. C 2, 7284–7291 (2014)

    CAS  Google Scholar 

  27. M.J. Hu, X.B. Cai, Q.Q. Guo, B. Bian, T.Y. Zhang, J. Yang, ACS Nano 10, 396–404 (2015)

    Google Scholar 

  28. Z. Bo, D.M. Liu, Y.T. Liang, D.D. Zhang, H. Yan, Y.Z. Zhang, Mater. Lett. 201, 50–53 (2017)

    Google Scholar 

  29. J. Zhi, W. Zhao, X.Y. Liu, A.R. Chen, Z.Q. Liu, F.Q. Huang, Adv. Funct. Mater. 24, 2013–2019 (2014)

    CAS  Google Scholar 

  30. M. Zhang, Y.H. Zhao, L. Yan, R. Peltier, W.L. Hui, X. Yao, Y.L. Cui, X.F. Chen, H.Y. Sun, Z.K. Wang, ACS Appl. Mater. Interfaces 8, 8834–8840 (2016)

    CAS  Google Scholar 

  31. P. Gao, Z.Y. Liu, D.D. Sun, J. Mater. Chem. A 1, 14262–14269 (2013)

    CAS  Google Scholar 

  32. P.K. Kalambate, R.A. Dar, S.P. Karna, A.K. Srivastava, J. Power Sources 276, 262–270 (2015)

    CAS  Google Scholar 

  33. X.S. Wang, P. Huang, L.L. Feng, M. He, S.W. Guo, G.X. Shen, D.X. Cui, RSC Adv. 2, 3816–3822 (2012)

    CAS  Google Scholar 

  34. B.P. Acar, Ultrason. Sonochem. 35, 397–404 (2017)

    Google Scholar 

  35. M. Pusty, L. Sinha, P.M. Shirage, New J. Chem. 43, 284–294 (2018)

    Google Scholar 

  36. J. Liu, L.B. Liu, X.W. Wu, X.K. Zhang, T.D. Li, New J. Chem. 39, 5272–5281 (2015)

    CAS  Google Scholar 

  37. J.Z. Sun, Y.Z. Guo, B. Cui, F.Q. Chu, H.Z. Li, Y. Li, M. He, D. Ding, R.P. Liu, L.H. Li, Y.L. Song, Appl. Surf. Sci. 445, 391–397 (2018)

    CAS  Google Scholar 

  38. J.K. Jiang, B. Bao, M.Z. Li, J.Z. Sun, C. Zhang, Y. Li, F.Y. Li, X. Yao, Y.L. Song, Adv. Mater. 28, 1420–1426 (2016)

    CAS  Google Scholar 

  39. C.H. Yun, F.Q. Chu, B. Cui, X. Wang, G.P. Liu, J.Z. Sun, Mater. Lett. 266, 127461 (2020)

    CAS  Google Scholar 

  40. P. He, B. Derby, 2D Mater. 4, 021021 (2017)

    Google Scholar 

  41. J.H. Wang, C. Song, Z.M. Zhong, Z.H. Hu, S.H. Han, W. Xu, J.B. Peng, L. Ying, J. Wang, Y. Cao, J. Mater. Chem. C 5, 5005–5009 (2017)

    CAS  Google Scholar 

  42. D.L. Tian, Y.L. Song, L. Jiang, Chem. Soc. Rev. 42, 5184–5209 (2013)

    CAS  Google Scholar 

  43. Z.B. Pei, H.B. Hu, G.J. Liang, C.H. Ye, Nano-Micro Lett. 9, 19 (2017)

    Google Scholar 

  44. Z. Mohammadi, M.H. Entezari, Ultrason. Sonochem. 44, 1–13 (2018)

    CAS  Google Scholar 

  45. J.H. Choy, D.H. Kim, C.W. Kwon, S.J. Hwang, Y.I. Kim, J. Power Sources 77, 1–11 (1999)

    CAS  Google Scholar 

  46. W. Hu, T. Li, X. Liu, D. Dastan, K. Ji, P. Zhao, J. Alloys Compd. 818, 152933 (2020)

    CAS  Google Scholar 

  47. D. Dastan, S.L. Panahi, N.B. Chaure, J. Mater. Sci.: Mater. Electron. 27, 12291–12296 (2016)

    CAS  Google Scholar 

  48. M. Prasciolu, A. Haase, F. Scholze, H.N. Chapman, S. Bajt, Opt. Express 23, 15195–15204 (2015)

    CAS  Google Scholar 

  49. Y.L. Shao, M.F.E. Kady, J.Y. Sun, Y.G. Li, Q.H. Zhang, M.F. Zhu, H.Z. Wang, B. Dunn, R.B. Kaner, Chem. Rev. 118, 9233–9280 (2018)

    CAS  Google Scholar 

  50. D. Dastan, Appl. Phys. A 123, 699 (2017)

    Google Scholar 

  51. D. Dastan, J. At. Mol. Condens. Nano. Phys. 2, 109–114 (2015)

    Google Scholar 

  52. A. Jafari, M.H. Alam, D. Dastan, S. Ziakhodadadian, Z. Shi, H. Garmestani, A.S. Weidenbach, Ş. Ţălu, J. Mater. Sci.: Mater. Electron. 30, 21185–21198 (2019)

    CAS  Google Scholar 

  53. A.M. Dimiev, J.M. Tour, ACS Nano 8, 3060–3068 (2014)

    CAS  Google Scholar 

  54. D. Dastan, A. Banpurkar, J. Mater. Sci.: Mater. Electron. 28, 3851–3859 (2017)

    CAS  Google Scholar 

  55. D. Dastan, S.W. Gosavi, N.B. Chaure, Macromol. Symp. 347, 81–86 (2015)

    CAS  Google Scholar 

  56. H. Zuo, W. Fu, R. Fan, D. Dastan, H. Wang, Z. Shi, Mater. Lett. 263, 127217 (2020)

    CAS  Google Scholar 

  57. X. Yin, D. Dastan, F. Wu, J. Li, Nanomaterials 9, 1163 (2019)

    CAS  Google Scholar 

  58. S. Abbasi, M. Hasanpour, F. Ahmadpoor, M. Sillanpaa, D. Dastan, A. Achour, Int. J. Environ. Anal. Chem. (2019). https://doi.org/10.1080/03067319.2019.1662414

    Article  Google Scholar 

  59. J. Liu, T. Jiang, F. Duan, G. Shen, X. He, W. Yang, P. Liang, Y. Yue, Q. Lan, J. Wu, Q. Zeng, J. Alloys Compd. 745, 370–377 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the National Nature Science Foundation of China (No. 21703110), the Key Research and Development Project of Shandong Province of China (Nos. 2017GGX80105, 2019GGX102037), the Foundation (No. KF201822) of Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education/Shandong Province of China, the Foundation (Nos. ZZ20190213, ZZ20190218) of State Key Laboratory of Biobased Material and Green Papermaking of Qilu University of Technology (Shandong Academy of Sciences) of China, the Project of International Cooperation Research Special Funds Program (No. QLUTGJHZ2018026) of Qilu University of Technology (Shandong Academy of Sciences) of China, the Dawn Program (No. 16CGB10) of Shanghai Municipal Education Commission and Shanghai Education development Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fuqiang Chu or Jiazhen Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 13616 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, B., Chu, F., Li, H. et al. Inkjet printing porous graphene/silver flexible electrode with enhanced electrochemical performance based on vapor phase reduction. J Mater Sci: Mater Electron 31, 10795–10802 (2020). https://doi.org/10.1007/s10854-020-03630-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03630-1

Navigation