Skip to main content
Log in

Enhanced performance of polymer solar cells based on P3HT:PCBM via incorporating Au nanoparticles prepared by the micellar method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Surface plasmonic effect of metal nanoparticles is an effective method to improve the power conversion efficiency (PCE) of solar cells. In this work, the PCE of bulk heterojunction (BHJ) polymer solar cells was improved by Au nanoparticles (NPs). The Au NPs were embedded into PEDOT:PSS hole transport layer by spin coating on the ITO substrates. The Au NPs with a diameter of ~16 nm were prepared by the micellar method using polystyrene-block-poly (2-vinylpyridine) diblock polymer. The Au NPs prepared by this method are distributed uniformly in size and without agglomeration on the substrates. From both experimental and theoretical results, it can be seen that the light absorption of the active layer was increased because of the surface plasmonic effect of Au NPs. Meanwhile, the carrier transport performance of PEDOT:PSS was enhanced with introduced Au NPs. As a result, the PCE of BHJ solar cells was improved from 2.81 to 3.25% by incorporating Au NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Deibel, V. Dyakonov, Polymer–fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 73, 096401 (2010)

    Article  Google Scholar 

  2. B.C. Thompson, J.M. Frechet, Polymer-fullerene composite solar cells. Angew. Chem. Int. Ed. 47, 58 (2008)

    Article  CAS  Google Scholar 

  3. S. Dai, T. Li, W. Wang, Y. Xiao, T.K. Lau, Z. Li, K. Liu, X. Lu, X. Zhan, Enhancing the performance of polymer solar cells via core engineering of NIR-absorbing electron acceptors. Adv. Mater. 30, 1706571 (2018)

    Article  Google Scholar 

  4. S. Li, L. Ye, W. Zhao, H.P. Yan, B. Yang, D.L. Liu, W.N. Li, H. Ade, J.H. Hou, A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells. J. Am. Chem. Soc. 140, 7159 (2018)

    Article  CAS  Google Scholar 

  5. C.K. Sun, F. Pan, H.J. Bin, J.Q. Zhang, L.W. Xue, B.B. Qiu, Z.X. Wei, Z.G. Zhang, Y.F. Li, A low cost and high performance polymer donor material for polymer solar cells. Nat. Commun. 9, 743 (2018)

    Article  Google Scholar 

  6. J.B. You, L.T. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.C. Chen, J. Gao, G. Li, Y. Yang, A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 4, 1446 (2013)

    Article  Google Scholar 

  7. S.Q. Zhang, Y.P. Qin, J. Zhu, J.H. Hou, Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv. Mater. 30, 1800868 (2018)

    Article  Google Scholar 

  8. A. Bakour, M. Baitoul, O. Bajjou, F. Massuyeau, E. Faulques, Improving optical properties of in situ reduced graphene oxide/poly(3-hexylthiophene) composites. Mater. Res. Express 4, 025031 (2017)

    Article  Google Scholar 

  9. O. Bajjou, A. Bakour, M. Khenfouch, M. Baitoul, B. Mothudi, M. Maaza, E. Faulques, Charge carrier dynamics and pH effect on optical properties of anionic and cationic porphyrins/ graphene oxide composites. J. Electron. Mater. 47, 2897 (2018)

    Article  CAS  Google Scholar 

  10. F.L. Araújo, D.R.B. Amorim, B.B.M. Torres, D.J. Coutinho, R.M. Faria, Effects of additive-solvents on the mobility and recombination of a solar cell based on PTB7-Th:PC71BM. Sol. Energy 177, 284 (2019)

    Article  Google Scholar 

  11. C.J. Schaffer, J. Schlipf, E. Dwi Indari, B. Su, S. Bernstorff, P.M. Buschbaum, Effect of blend composition and additives on the morphology of PCPDTBT:PC71BM thin films for organic photovoltaics. ACS Appl. Mater. Interfaces 7, 21347 (2015)

    Article  CAS  Google Scholar 

  12. Y.Y. Zhang, X. Li, D.H. Xu, F.W. Meng, R. Hu, J. Zhao, Alkanedihalides additives for morphology control of PTB7:PC71BM-based polymer solar cells. Surf. Coat. Technol. 358, 481 (2019)

    Article  CAS  Google Scholar 

  13. H. Lu, H. Lu, Y.H. Liu, J. Tu, M. Li, X.J. Xu, Y.Z. Wu, Z.S. Bo, Polymer solar cells based on spontaneously-spreading film with double electron-transporting layers. Org. Electron. 69, 56 (2019)

    Article  CAS  Google Scholar 

  14. M.B. Upama, N.K. Elumalai, M.A. Mahmud, C. Xu, D. Wang, M. Wright, A. Uddin, Enhanced electron transport enables over 12% efficiency by interface engineering of non-fullerene organic solar cells. Sol. Energy Mater. Sol. Cells 187, 273 (2018)

    Article  CAS  Google Scholar 

  15. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205 (2010)

    Article  CAS  Google Scholar 

  16. S. In, D.R. Mason, H. Lee, M. Jung, C. Lee, N. Park, Enhanced light trapping and power conversion efficiency in ultrathin plasmonic organic solar cells: a coupled optical-electrical multiphysics study on the effect of nanoparticle geometry. ACS Photonics 2, 78 (2014)

    Article  Google Scholar 

  17. J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193 (2010)

    Article  CAS  Google Scholar 

  18. C.P. Chen, I.C. Lee, Y.Y. Tsai, C.L. Huang, Y.C. Chen, G.W. Huang, Efficient organic solar cells based on PTB7/PC71BM blend film with embedded different shapes silver nanoparticles into PEDOT:PSS as hole transporting layers. Org. Electron. 62, 95 (2018)

    Article  CAS  Google Scholar 

  19. P. Du, P.T. Jing, D. Li, Y.H. Cao, Z.Y. Liu, Z.C. Sun, Plasmonic Ag@oxide nanoprisms for enhanced performance of organic solar cells. Small 11, 2454 (2015)

    Article  CAS  Google Scholar 

  20. H.L. Gao, X.W. Zhang, Z.G. Yin, H.R. Tan, S.G. Zhang, J.H. Meng, X. Liu, Plasmon enhanced polymer solar cells by spin-coating Au nanoparticles on indium-tin-oxide substrate. Appl. Phys. Lett. 101, 133903 (2012)

    Article  Google Scholar 

  21. H.L. Gao, X.W. Zhang, Z.G. Yin, S.G. Zhang, J.H. Meng, X. Liu, Efficiency enhancement of polymer solar cells by localized surface plasmon of Au nanoparticles. J. Appl. Phys. 114, 163102 (2013)

    Article  Google Scholar 

  22. T. Isegawa, T. Okamoto, M. Kondo, S. Katsumata, W. Kubo, P3HT:PC61BM solar cell embedding silver nanostripes for light absorption enhancement. Opt. Commun. 441, 21 (2019)

    Article  CAS  Google Scholar 

  23. N. Kalfagiannis, P.G. Karagiannidis, C. Pitsalidis, N. Hastas, N.T. Panagiotopoulos, P. Patsalas, S. Logothetidis, Performance of hybrid buffer Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) layers doped with plasmonic silver nanoparticles. Thin Solid Films 560, 27 (2014)

    Article  CAS  Google Scholar 

  24. Y.H. Lee, A.E. Abdu, H.D.H. Kim, T.W. Kim, Enhancement of the power conversion efficiency of organic photovoltaic cells due to Au@SiO2 core shell nanoparticles embedded into a WO3 hole transport layer. Org. Electron. 68, 182 (2019)

    Article  CAS  Google Scholar 

  25. S. Phetsang, A. Phengdaam, C. Lertvachirapaiboon, R. Ishikawa, K. Shinbo, K. Kato, P. Mungkornasawakul, K. Ounnunkad, A. Baba, Investigation of a gold quantum dot/plasmonic gold nanoparticle system for improvement of organic solar cells. Nanoscale Adv. 1, 792 (2019)

    Article  CAS  Google Scholar 

  26. A.T. Nair, S. Palappra, V.S. Reddy, Multi-positional silver nanostructures for high absorption enhancement in polymer solar cells. Org. Electron. 73, 311 (2019)

    Article  Google Scholar 

  27. D.H. Wang, K.H. Park, J.H. Seo, J. Seifter, J.H. Jeon, J.K. Kim, J.H. Park, O.O. Park, A.J. Heeger, Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters. Adv. Energy Mater. 1, 766 (2011)

    Article  CAS  Google Scholar 

  28. H. Wang, Y.F. Ding, W.K. Chen, Y.H. Liu, D.D. Tang, G.L. Cui, W.H. Li, J.W. Shi, Z.S. Bo, Broadband absorption enhancement in polymer solar cells using highly efficient plasmonic heterostructured nanocrystals. ACS Appl. Mater. Interfaces 10, 30919 (2018)

    Article  CAS  Google Scholar 

  29. M. Xu, J. Feng, Y.S. Liu, Y. Jin, H.Y. Wang, H.B. Sun, Effective and tunable light trapping in bulk heterojunction organic solar cells by employing Au-Ag alloy nanoparticles. Appl. Phys. Lett. 105, 153303 (2014)

    Article  Google Scholar 

  30. Y.P. Zhang, J.Y. Hao, X. Li, S.F. Chen, L.H. Wang, X.G. Liu, W. Huang, Plasmonic-enhanced polymer photovoltaic cells based on Au nanoparticles with wide absorption spectra of 300–1000 nm. J. Mater. Chem. C 2, 9303 (2014)

    Article  CAS  Google Scholar 

  31. J. Shin, M. Song, H. Hafeez, P.J. Jeusraj, D.H. Kim, J.C. Lee, W.H. Lee, D.K. Choi, C.H. Kim, T.S. Bae, S.M. Yu, K.H. Kim, H.G. Park, K.B. Chung, A. Song, Y.C. Kang, J. Park, C.S. Kim, S.Y. Ryu, Harvesting near- and far-field plasmonic enhancements from large size gold nanoparticles for improved performance in organic bulk heterojunction solar cells. Org. Electron. 66, 94 (2019)

    Article  CAS  Google Scholar 

  32. H.Z. Yu, Z.P. Wu, X.X. Huang, S.W. Shi, Y.P. Li, Synergetic effects of acid treatment and localized surface plasmon resonance in PEDOT:PSS layers by doping HAuCl4 for efficient polymer solar cells. Org. Electron. 62, 121 (2018)

    Article  CAS  Google Scholar 

  33. H.G. Boyen, G. Kästle, K. Zürn, T. Herzog, F. Weigl, P. Ziemann, O. Mayer, C. Jerome, M. Moller, J.P. Spatz, M.G. Garnier, P. Oelhafen, A micellar route to ordered arrays of magnetic nanoparticles: from size-selected pure cobalt dots to cobalt–cobalt oxide core–shell systems. Adv. Funct. Mater. 13, 359 (2003)

    Article  CAS  Google Scholar 

  34. S. Qu, X.W. Zhang, Y. Gao, J.B. You, Y.M. Fan, Z.G. Yin, Z.F. Chen, Composition deviation of arrays of FePt nanoparticles starting from poly(styrene)-poly(4-vinylpyridine) micelles. Nanotechnology 19, 1135704 (2008)

    Article  Google Scholar 

  35. S. Krishnamoorthy, R. Pugin, J. Brugger, H. Heinzelmann, C. Hinderling, Tuning the dimensions and periodicities of nanostructures starting from the same polystyrene-block-poly(2-vinylpyridine) diblock copolymer. Adv. Func. Mater. 16, 1469 (2006)

    Article  CAS  Google Scholar 

  36. M.A. van Dijk, A.L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, B. Liunis, Absorption and scattering microscopy of single metal nanoparticles. Phys. Chem. Chem. Phys. 8, 3486 (2006)

    Article  Google Scholar 

  37. X.Z. Wang, J.W. Ho, Q.Y. Yang, H.L. Tam, G.X. Li, K.W. Cheah, F.R. Zhu, Performance enhancement in organic photovoltaic devices using plasma-polymerized fluorocarbon-modified Ag nanoparticles. Org. Electron. 12, 1943 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Beijing Municipality (CN) [Grant No. 4192016].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongli Gao or Jinxiang Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Meng, J., Sun, J. et al. Enhanced performance of polymer solar cells based on P3HT:PCBM via incorporating Au nanoparticles prepared by the micellar method. J Mater Sci: Mater Electron 31, 10760–10767 (2020). https://doi.org/10.1007/s10854-020-03626-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03626-x

Navigation