Skip to main content
Log in

La-substituted into the CuFe2O4 nanostructure: a study on its magnetic, crystal, morphological, optical, and microwave features

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, La-substituted into the CuFe2O4 nanostructure with diverse molar ratios were prepared using a modified sol–gel route and then they were characterized by the X-ray powder diffraction (XRD), Fourier-transform infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), vibrating sample magnetometer (VSM), diffuse reflection spectroscopy (DRS), and vector network analyzer (VNA) analysis. The results demonstrated that inserting La generated CuO and LaFeO3 crystal structures as well as diminished ferromagnetic property of the prepared composites. The optical performance declared that loading La can tune the energy bandgap and light absorption. Additionally, the produced novel phases modified the morphology of the synthesized nanocomposites. The microwave absorbing characteristics were assessed by a silicone rubber medium, which La-substituted/silicone rubber composite illustrated a maximum reflection loss (RL) of − 73.95 dB at 11.10 GHz with a thickness of 2.50 mm; meanwhile, the composite gained an efficient bandwidth of 7.30 GHz (RL < − 10 dB) as well as 2.71 GHz (RL < − 20 dB) with 2.00 mm in thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. H. Chen, W. Ma, Z. Huang, Y. Zhang, Y. Huang, Y. Chen, Adv. Opt. Mater. 7, 1801318 (2019)

    Article  CAS  Google Scholar 

  2. D. Zhang, T. Liu, J. Cheng et al., Nano-Micro Lett. 11, 38 (2019)

    Article  Google Scholar 

  3. Q. Li, Z. Zhang, L. Qi, Q. Liao, Z. Kang, Y. Zhang, Adv. Sci. 6, 1801057 (2019)

    Article  CAS  Google Scholar 

  4. M.S. Cao, X.X. Wang, M. Zhang et al., Adv. Funct. Mater. 29, 1807398 (2019)

    Article  CAS  Google Scholar 

  5. Z. Wu, K. Pei, L. Xing, X. Yu, W. You, R. Che, Adv. Funct. Mater. 29, 1901448 (2019)

    Article  CAS  Google Scholar 

  6. P. He, M. Cao, J.-C. Shu et al., ACS Appl. Mater. Interfaces. 11, 12535 (2019)

    Article  CAS  Google Scholar 

  7. L. Wang, X. Yu, X. Li, J. Zhang, M. Wang, R. Che, Chem. Eng. J. 383, 123099 (2019)

    Article  CAS  Google Scholar 

  8. X. Cui, X. Liang, J. Chen, W. Gu, G. Ji, Y. Du, Carbon 152, 827 (2019)

    Article  CAS  Google Scholar 

  9. L. Xing, X. Li, Z. Wu et al., Chem. Eng. J. 379, 122241 (2020)

    Article  CAS  Google Scholar 

  10. X. Cui, W. Liu, W. Gu, X. Liang, G. Ji, Inorganic Chem. Front. 6, 590 (2019)

    Article  CAS  Google Scholar 

  11. D.-Q. Zhang, T.-T. Liu, J.-C. Shu et al., ACS Appl. Mater. Interfaces 11, 26807 (2019)

    Article  CAS  Google Scholar 

  12. X. Shi, W. You, Y. Zhao, X. Li, Z. Shao, R. Che, Nanoscale 11, 17270 (2019)

    Article  CAS  Google Scholar 

  13. J. Ma, X. Wang, W. Cao et al., Chem. Eng. J. 339, 487 (2018)

    Article  CAS  Google Scholar 

  14. M. Ning, J. Li, B. Kuang et al., Appl. Surf. Sci. 447, 244 (2018)

    Article  CAS  Google Scholar 

  15. X. Li, L. Wang, W. You et al., Nanoscale 11, 2694 (2019)

    Article  CAS  Google Scholar 

  16. X. Cui, X. Liang, W. Liu, W. Gu, G. Ji, Y. Du, Chem. Eng. J. 381, 122589 (2020)

    Article  CAS  Google Scholar 

  17. R. Peymanfar, F. Norouzi, S. Javanshir, Synth. Met. 252, 40 (2019)

    Article  CAS  Google Scholar 

  18. R. Peymanfar, F. Norouzi, S. Javanshir, Mater. Res. Express 6, 035024 (2018)

    Article  CAS  Google Scholar 

  19. R. Peymanfar, F. Azadi, Nano-Struct. Nano-Obj. 17, 112 (2019)

    Article  CAS  Google Scholar 

  20. R. Peymanfar, M. Ahmadi, S. Javanshir, Mater. Res. Express 6, 085063 (2019)

    Article  CAS  Google Scholar 

  21. R. Peymanfar, N. Khodamoradipoor, Physica Status Solidi (A) 216, 1900057 (2019)

    Article  CAS  Google Scholar 

  22. R. Peymanfar, S. Javanshir, M.R. Naimi-Jamal, A. Cheldavi, Mater. Research. Express 6, 075004 (2019)

    Article  CAS  Google Scholar 

  23. R. Peymanfar, M. Rahmanisaghieh, Mater. Res. Express 5, 105012 (2018)

    Article  CAS  Google Scholar 

  24. K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Optik 129, 57 (2017)

    Article  CAS  Google Scholar 

  25. R. Peymanfar, S. Javanshir, M.R. Naimi-Jamal, A. Cheldavi, Mater. Res. Express 6, 75004 (2019)

    Article  CAS  Google Scholar 

  26. L. Quan, F. Qin, Y. Li et al., Nanotechnology 29, 245706 (2018)

    Article  CAS  Google Scholar 

  27. H. Yang, J. Dai, Y. Lin, N. Han, X. Liu, J. Wang, J. Mater. Sci. 28, 10853 (2017)

    CAS  Google Scholar 

  28. Y. Zuo, Z. Yao, J. Zhou, X. Zhang, Y. Ning, J. Mater. Sci. 29, 922 (2018)

    CAS  Google Scholar 

  29. X.-J. Zhang, S. Li, S.-W. Wang et al., J. Phys. Chem. C 120, 22019 (2016)

    Article  CAS  Google Scholar 

  30. B. Zhao, G. Shao, B. Fan, W. Zhao, R. Zhang, J. Mater. Sci. 26, 5393 (2015)

    CAS  Google Scholar 

  31. Y. Lin, J. Wang, H. Yang, L. Wang, J. Mater. Sci. 28, 17968 (2017)

    CAS  Google Scholar 

  32. R. Peymanfar, M. Rahmanisaghieh, Mater. Res. Express 6, 105025 (2019)

    Article  CAS  Google Scholar 

  33. R. Peymanfar, J. Karimi, R. Fallahi, J. Appl. Polym. Sci. 137, 48430 (2019)

    Article  CAS  Google Scholar 

  34. R. Peymanfar, S. Javanshir, M.R. Naimi-Jamal, A. Cheldavi, M. Esmkhani, J. Electron. Mater. 48, 3086 (2019)

    Article  CAS  Google Scholar 

  35. S. Wang, Y. Xu, R. Fu et al., Nano-Micro Lett. 11, 76 (2019)

    Article  Google Scholar 

  36. W.-Q. Cao, X.-X. Wang, J. Yuan, W.-Z. Wang, M.-S. Cao, J. Mater. Chem. C 3, 10017 (2015)

    Article  CAS  Google Scholar 

  37. N. Chahat, M. Zhadobov, R. Augustine, R. Sauleau, Electron. Lett. 47, 427 (2011)

    Article  Google Scholar 

  38. H. Wang, F. Meng, F. Huang et al., ACS Appl. Mater. Interfaces 11, 12142 (2019)

    Article  CAS  Google Scholar 

  39. S.-Q. Lv, W. Xu, W. Huang, G.-C. Lv, G.-S. Wang, RSC Adv. 9, 13088 (2019)

    Article  CAS  Google Scholar 

  40. Y. Wang, X. Gao, X. Wu, C. Luo, Ceram. Int. 46, 1560 (2020)

    Article  CAS  Google Scholar 

  41. Y. Wang, X. Gao, Y. Fu et al., Compos. B 169, 221 (2019)

    Article  CAS  Google Scholar 

  42. Y.-F. Pan, G.-S. Wang, L. Liu, L. Guo, S.-H. Yu, Nano Res. 10, 284 (2017)

    Article  CAS  Google Scholar 

  43. J. Zhao, J. Yu, Y. Xie et al., Sci. Rep. 6, 20496 (2016). https://doi.org/10.1038/srep20496

    Article  CAS  Google Scholar 

  44. Y. Wang, X. Gao, C. Lin, L. Shi, X. Li, G. Wu, J. Alloy. Compd. 785, 765 (2019)

    Article  CAS  Google Scholar 

  45. Y. Wang, X. Gao, X. Wu, W. Zhang, C. Luo, P. Liu, Chem. Eng. J. 375, 121942 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Peymanfar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 942 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peymanfar, R., Azadi, F. La-substituted into the CuFe2O4 nanostructure: a study on its magnetic, crystal, morphological, optical, and microwave features. J Mater Sci: Mater Electron 31, 9586–9594 (2020). https://doi.org/10.1007/s10854-020-03501-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03501-9

Navigation