Skip to main content
Log in

All printed wide range humidity sensor array combining MoSe2 and PVOH in series

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Single transducer-based sensors have limitations of sensitivity and detection range. To enhance the sensitivity and range of detection here, a multi-transducer-based sensing array is designed for humidity sensing applications. Two-dimensional (2D) transition metal dichalcogenide (TMDC) namely MoSe2 nano-flakes and an organic semiconducting polymer polyvinyl alcohol (PVOH) are employed as active layers for two different sensors on a single polyethylene terephthalate (PET) substrate. Here, MoSe2 nano-flakes are highly responsive towards the low relative humidity (RH) region below 50% RH, while the PVOH is responsive to high humidity levels above 50% RH. The two sensors are combined in series as sensor array, which are capable to detect linear humidity response from all range of RH. Screen-printing and spin coating techniques are utilized for fabrication of inter digital electrodes (IDEs) and active layers, respectively. The impedance responses of individual as well as sensor array are recorded at 1 kHz frequency to analyze the fabricated sensor, and COMSOL Multiphysics platform is used for designing and verification of experimental results. The fabricated sensor is capable to detect a wide range from 0 to 100% RH, with a response time (Tres) of 0.6 s and recovery time (Trec) of 0.9 s with a very high sensitivity of 50 kΩ/RH. This approach can resolve the limitations of sensitivity, detection range, and response time faced in single transducer-based sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X. Ren, P.K. Chan, J. Lu, B. Huang, D.C. Leung, Adv. Mater. 25, 1290–1290 (2013). https://doi.org/10.1002/adma.201370059

    Article  CAS  Google Scholar 

  2. A. Wilson, C. Punginelli, A. Gall, C. Bonetti, M. Alexandre, J.-M. Routaboul, C.A. Kerfeld, R. Van Grondelle, B. Robert, J.T. Kennis, Proc. Natl Acad. Sci. USA 105, 12075–12080 (2008). https://doi.org/10.1073/pnas.0804636105

    Article  Google Scholar 

  3. D.-S. Lee, S.-D. Han, J.-S. Huh, D.-D. Lee, Sens. Actuators B 60, 57–63 (1999). https://doi.org/10.1016/S0925-4005(99)00244-0

    Article  CAS  Google Scholar 

  4. S. Waghuley, S. Yenorkar, S. Yawale, S. Yawale, Sens. Actuators B 128, 366–373 (2008). https://doi.org/10.1016/j.snb.2007.06.023

    Article  CAS  Google Scholar 

  5. Z. Chen, C. Lu, Sens. Lett. 3, 274–295 (2005). https://doi.org/10.1166/sl.2005.045

    Article  CAS  Google Scholar 

  6. H. Viitanen, J. Vinha, K. Salminen, T. Ojanen, R. Peuhkuri, L. Paajanen, K. Lähdesmäki, J. Build. Phys. 33, 201–224 (2010). https://doi.org/10.1177/1744259109343511

    Article  Google Scholar 

  7. S. Ahmad, Cem. Concr. Compos. 25, 459–471 (2003). https://doi.org/10.1016/S0958-9465(02)00086-0

    Article  CAS  Google Scholar 

  8. A. Sun, L. Huang, Y. Li, Sens. Actuators B 139, 543–547 (2009). https://doi.org/10.1016/j.snb.2009.03.064

    Article  CAS  Google Scholar 

  9. S. Aziz, D.E. Chang, Y.H. Doh, C.U. Kang, K.H. Choi, J. Electron. Mater. 44, 3992–3999 (2015). https://doi.org/10.1007/s11664-015-3914-2

    Article  CAS  Google Scholar 

  10. S. Aziz, K.G. Bum, Y.J. Yang, B.-S. Yang, C.U. Kang, Y.H. Doh, K.H. Choi, H.C. Kim, Sens. Actuators A 246, 1–8 (2016). https://doi.org/10.1016/j.sna.2016.04.059

    Article  CAS  Google Scholar 

  11. V. Turkani, B. Narakathu, D. Maddipatla, B. Bazuin, M. Atashbar, in 17th International Meeting on Chemical Sensors—IMCS 2018 (2018), pp. 519–520. https://doi.org/10.5162/imcs2018/p1fw.5

  12. G. Dubourg, A. Segkos, J. Katona, M. Radović, S. Savić, G. Niarchos, C. Tsamis, V. Crnojević-Bengin, Sensors 17, 1854 (2017). https://doi.org/10.3390/s17081854

    Article  CAS  Google Scholar 

  13. G. Niarchos, G. Dubourg, G. Afroudakis, M. Georgopoulos, V. Tsouti, E. Makarona, V. Crnojevic-Bengin, C. Tsamis, Sensors 17, 516 (2017). https://doi.org/10.3390/s17030516

    Article  CAS  Google Scholar 

  14. A. Reddy, B. Narakathu, M. Atashbar, M. Rebros, E. Rebrosova, B. Bazuin, M. Joyce, P. Fleming, A. Pekarovicova, Sens. Lett. 9, 869–871 (2011). https://doi.org/10.1166/sl.2011.1633

    Article  CAS  Google Scholar 

  15. C. Sapsanis, U. Buttner, H. Omran, Y. Belmabkhout, O. Shekhah, M. Eddaoudi, K.N. Salama, in 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS) (IEEE, 2016) pp. 1–4

  16. C. Gaspar, J. Olkkonen, S. Passoja, M. Smolander, Sensors 17, 1464 (2017). https://doi.org/10.3390/s17071464

    Article  CAS  Google Scholar 

  17. G. Hassan, J. Bae, C.H. Lee, A. Hassan, J. Mater. Sci. Mater. Electron. 29, 5806–5813 (2018). https://doi.org/10.1007/s10854-018-8552-z

    Article  CAS  Google Scholar 

  18. M.U. Khan, G. Hassan, J. Bae, Sci. Rep. 9, 5824 (2019). https://doi.org/10.1038/s41598-019-42337-0

    Article  CAS  Google Scholar 

  19. G.U. Siddiqui, M. Sajid, J. Ali, S.W. Kim, Y.H. Doh, K.H. Choi, Sens. Actuators B 266, 354–363 (2018). https://doi.org/10.1016/j.snb.2018.03.134

    Article  CAS  Google Scholar 

  20. A.M. Soomro, F. Jabbar, M. Ali, J.-W. Lee, S.W. Mun, K.H. Choi, J. Mater. Sci. Mater. Electron. 30, 9455–9465 (2019). https://doi.org/10.1007/s10854-019-01277-1

    Article  CAS  Google Scholar 

  21. S. Yang, C. Jiang, S.-H. Wei, Appl. Phys. Rev. 4, 021304 (2017). https://doi.org/10.1063/1.4983310

    Article  CAS  Google Scholar 

  22. J. Zhao, N. Li, H. Yu, Z. Wei, M. Liao, P. Chen, S. Wang, D. Shi, Q. Sun, G. Zhang, Adv. Mater. 29, 1702076 (2017). https://doi.org/10.1002/adma.201702076

    Article  CAS  Google Scholar 

  23. P. He, J. Brent, H. Ding, J. Yang, D. Lewis, P. O’Brien, B. Derby, Nanoscale 10, 5599–5606 (2018). https://doi.org/10.1039/C7NR08115D

    Article  CAS  Google Scholar 

  24. G. Woyessa, K. Nielsen, A. Stefani, C. Markos, O. Bang, Opt. Express 24, 1206–1213 (2016). https://doi.org/10.1364/OE.24.001206

    Article  CAS  Google Scholar 

  25. J.-K. Park, T.-G. Kang, B.-H. Kim, H.-J. Lee, H.H. Choi, J.-G. Yook, Sci. Rep. 8, 439 (2018). https://doi.org/10.1038/s41598-017-18979-3

    Article  CAS  Google Scholar 

  26. H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, M.S. Dresselhaus, Sci. Rep. 3, 2714 (2013). https://doi.org/10.1038/srep02714

    Article  Google Scholar 

  27. S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, T. Ryhanen, ACS Nano 7, 11166–11173 (2013). https://doi.org/10.1021/nn404889b

    Article  CAS  Google Scholar 

  28. S. Ali, A. Hassan, G. Hassan, J. Bae, C.H. Lee, Carbon 105, 23–32 (2016). https://doi.org/10.1016/j.carbon.2016.04.013

    Article  CAS  Google Scholar 

  29. M. Sajid, H.B. Kim, Y.J. Yang, J. Jo, K.H. Choi, Sens. Actuators B 246, 809–818 (2017). https://doi.org/10.1016/j.snb.2017.02.162

    Article  CAS  Google Scholar 

  30. M. Zhong, Z. Wei, X. Meng, F. Wu, J. Li, RSC Adv. 5, 2429–2433 (2015). https://doi.org/10.1039/C4RA13398F

    Article  CAS  Google Scholar 

  31. H. Farahani, R. Wagiran, M.N. Hamidon, Sensors 14, 7881–7939 (2014). https://doi.org/10.3390/s140507881

    Article  CAS  Google Scholar 

  32. S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, ACS Nano 7, 2898–2926 (2013). https://doi.org/10.1021/nn400280c

    Article  CAS  Google Scholar 

  33. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012). https://doi.org/10.1038/nnano.2012.193

    Article  CAS  Google Scholar 

  34. M. Xu, T. Liang, M. Shi, H. Chen, Chem. Rev. 113, 3766–3798 (2013). https://doi.org/10.1021/cr300263a

    Article  CAS  Google Scholar 

  35. K.F. Mak, K. He, C. Lee, G.H. Lee, J. Hone, T.F. Heinz, J. Shan, Nat. Mater. 12, 207 (2013). https://doi.org/10.1038/nmat3505

    Article  CAS  Google Scholar 

  36. T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, Nat. Commun. 3, 887 (2012). https://doi.org/10.1038/ncomms1882

    Article  CAS  Google Scholar 

  37. Z. Niu, L. Liu, L. Zhang, X. Chen, Small 10, 3434–3441 (2014). https://doi.org/10.1002/smll.201400128

    Article  CAS  Google Scholar 

  38. D.J. Lipomi, M. Vosgueritchian, B.C. Tee, S.L. Hellstrom, J.A. Lee, C.H. Fox, Z. Bao, Nat. Nanotechnol. 6, 788 (2011). https://doi.org/10.1038/nnano.2011.184

    Article  CAS  Google Scholar 

  39. Z. Bao, X. Chen, Adv. Mater. 28, 4177–4179 (2016). https://doi.org/10.1002/adma.201601422

    Article  CAS  Google Scholar 

  40. N.T. Shelke, D.J. Late, Sens. Actuators A (2019). https://doi.org/10.1016/j.sna.2019.05.045

    Article  Google Scholar 

  41. A. Castellanos-Gomez, Nat. Photon. 10, 202–204 (2016). https://doi.org/10.1038/nphoton.2016.53

    Article  Google Scholar 

  42. C.-P. Yang, Y.-X. Yin, Y.-G. Guo, J. Phys. Chem. Lett. 6, 256–266 (2015). https://doi.org/10.1021/jz502405h

    Article  CAS  Google Scholar 

  43. D. Kong, H. Wang, J.J. Cha, M. Pasta, K.J. Koski, J. Yao, Y. Cui, Nano Lett. 13, 1341–1347 (2013). https://doi.org/10.1021/nl400258t

    Article  CAS  Google Scholar 

  44. U. Gupta, B. Naidu, U. Maitra, A. Singh, S.N. Shirodkar, U.V. Waghmare, C. Rao, APL Mater. 2, 092802 (2014). https://doi.org/10.1063/1.4892976

    Article  CAS  Google Scholar 

  45. T. Kubart, T. Polcar, L. Kopecký, R. Novak, D. Novakova, Surf. Coat. Technol. 193, 230–233 (2005). https://doi.org/10.1016/j.surfcoat.2004.08.146

    Article  CAS  Google Scholar 

  46. K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J.N. Coleman, L. Zhang, W.J. Blau, J. Wang, Nanoscale 6, 10530–10535 (2014). https://doi.org/10.1039/C4NR02634A

    Article  CAS  Google Scholar 

  47. N. Dong, Y. Li, Y. Feng, S. Zhang, X. Zhang, C. Chang, J. Fan, L. Zhang, J. Wang, Sci. Rep. 5, 14646 (2015). https://doi.org/10.1038/srep14646

    Article  CAS  Google Scholar 

  48. S. Zhang, T.H. Nguyen, W. Zhang, Y. Park, W. Yang, Appl. Phys. Lett. 111, 161603 (2017). https://doi.org/10.1063/1.4986781

    Article  CAS  Google Scholar 

  49. T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Opt. Express 25, 9823–9833 (2017). https://doi.org/10.1364/OE.25.009823

    Article  CAS  Google Scholar 

  50. R.K. Jha, P.K. Guha, Nanotechnology 27, 475503 (2016). https://doi.org/10.1088/0957-4484/27/47/475503

    Article  CAS  Google Scholar 

  51. A.S. Pawbake, R.G. Waykar, D.J. Late, S.R. Jadkar, ACS Appl. Mater. Interfaces 8, 3359–3365 (2016). https://doi.org/10.1021/acsami.5b11325

    Article  CAS  Google Scholar 

  52. N. Li, X.-D. Chen, X.-P. Chen, X. Ding, X. Zhao, IEEE Electron Device Lett. 38, 806–809 (2017). https://doi.org/10.1109/LED.2017.2699332

    Article  CAS  Google Scholar 

  53. M.-C. Chen, C.-L. Hsu, T.-J. Hsueh, IEEE Electron Device Lett. 35, 590–592 (2014). https://doi.org/10.1109/LED.2014.2310741

    Article  CAS  Google Scholar 

  54. Y. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, Q. Zhao, IEEE Photon. Technol. Lett. 21, 441–443 (2009). https://doi.org/10.1109/LPT.2009.2013185

    Article  CAS  Google Scholar 

  55. D. Su, X. Qiao, Q. Rong, H. Sun, J. Zhang, Z. Bai, Y. Du, D. Feng, Y. Wang, M. Hu, Opt. Commun. 311, 107–110 (2013). https://doi.org/10.1016/j.optcom.2013.08.016

    Article  CAS  Google Scholar 

  56. C.-W. Lee, D.-H. Nam, Y.-S. Han, K.-C. Chung, M.-S. Gong, Sens. Actuators B 109, 334–340 (2005). https://doi.org/10.1016/j.snb.2004.12.070

    Article  CAS  Google Scholar 

  57. C.-W. Lee, H.-S. Park, J.-G. Kim, B.-K. Choi, S.-W. Joo, M.-S. Gong, Sens. Actuators B 109, 315–322 (2005). https://doi.org/10.1016/j.snb.2004.12.063

    Article  CAS  Google Scholar 

  58. J. Dai, T. Zhang, H. Zhao, T. Fei, Sens. Actuators B 242, 1108–1114 (2017). https://doi.org/10.1016/j.snb.2016.09.139

    Article  CAS  Google Scholar 

  59. J. Dai, H. Zhao, X. Lin, S. Liu, Y. Liu, X. Liu, T. Fei, T. Zhang, ACS Appl. Mater. Interfaces 11, 6483–6490 (2019). https://doi.org/10.1021/acsami.8b18904

    Article  CAS  Google Scholar 

  60. W.C. Wong, C.C. Chan, L.H. Chen, T. Li, K.X. Lee, K.C. Leong, Sens. Actuators B 174, 563–569 (2012). https://doi.org/10.1016/j.snb.2012.07.032

    Article  CAS  Google Scholar 

  61. C. Shao, H.-Y. Kim, J. Gong, B. Ding, D.-R. Lee, S.-J. Park, Mater. Lett. 57, 1579–1584 (2003). https://doi.org/10.1016/S0167-577X(02)01036-4

    Article  CAS  Google Scholar 

  62. K. Qiu, A.N. Netravali, J. Polym. Environ. 21, 658–674 (2013). https://doi.org/10.1007/s10924-013-0584-0

    Article  CAS  Google Scholar 

  63. D. Cho, A.N. Netravali, Y.L. Joo, Polym. Degrad. Stab. 97, 747–754 (2012). https://doi.org/10.1016/j.polymdegradstab.2012.02.007

    Article  CAS  Google Scholar 

  64. S. Vijayalakshmi, G. Madras, J. Appl. Polym. Sci. 100, 4888–4892 (2006). https://doi.org/10.1002/app.23280

    Article  CAS  Google Scholar 

  65. T. Gaaz, A. Sulong, M. Akhtar, A. Kadhum, A. Mohamad, A. Al-Amiery, Molecules 20, 22833–22847 (2015). https://doi.org/10.3390/molecules201219884

    Article  CAS  Google Scholar 

  66. M. Albdiry, B. Yousif, Mater. Des. 48, 68–76 (2013). https://doi.org/10.1016/j.matdes.2012.08.035

    Article  CAS  Google Scholar 

  67. M. Sajid, A. Osman, G.U. Siddiqui, H.B. Kim, S.W. Kim, J.B. Ko, Y.K. Lim, K.H. Choi, Sci. Rep. 7, 5802 (2017). https://doi.org/10.1038/s41598-017-06265-1

    Article  CAS  Google Scholar 

  68. M. Sajid, H.B. Kim, J.H. Lim, K.H. Choi, J. Mater. Chem. C 6, 1421–1432 (2018). https://doi.org/10.1039/C7TC04933A

    Article  CAS  Google Scholar 

  69. T. Seiyama, N. Yamazoe, H. Arai, Sens. Actuators 4, 85–96 (1983). https://doi.org/10.1016/0250-6874(83)85012-4

    Article  CAS  Google Scholar 

  70. S. Jain, S. Chakane, A. Samui, V. Krishnamurthy, S. Bhoraskar, Sens. Actuators B 96, 124–129 (2003). https://doi.org/10.1016/S0925-4005(03)00511-2

    Article  CAS  Google Scholar 

  71. K. Ogura, T. Saino, M. Nakayama, H. Shiigi, J. Mater. Chem. 7, 2363–2366 (1997). https://doi.org/10.1039/A705463G

    Article  CAS  Google Scholar 

  72. A. Gastón, F. Pérez, J. Sevilla, Appl. Opt. 43, 4127–4132 (2004). https://doi.org/10.1364/AO.43.004127

    Article  Google Scholar 

  73. J.H. Jang, J.I. Han, Sens. Actuators A 261, 268–273 (2017). https://doi.org/10.1016/j.sna.2017.05.011

    Article  CAS  Google Scholar 

  74. S.-L. Zhang, H. Jung, J.-S. Huh, J.-B. Yu, W.-C. Yang, J. Nanosci. Nanotechnol. 14, 8518–8522 (2014). https://doi.org/10.1166/jnn.2014.9984

    Article  CAS  Google Scholar 

  75. D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, ACS Nano 8, 1102–1120 (2014). https://doi.org/10.1021/nn500064s

    Article  CAS  Google Scholar 

  76. P.B. James, M. Lavik, Acta Crystallogr. 16, 1183–1183 (1963). https://doi.org/10.1107/S0365110X6300311X

    Article  CAS  Google Scholar 

  77. D.J. Late, T. Doneux, M. Bougouma, Appl. Phys. Lett. 105, 233103 (2014). https://doi.org/10.1063/1.4903358

    Article  CAS  Google Scholar 

  78. G. Hassan, M. Sajid, C. Choi, Sci. Rep. 9, 1–10 (2019). https://doi.org/10.1038/s41598-019-51712-w

    Article  CAS  Google Scholar 

  79. P. Van Gerwen, W. Laureyn, W. Laureys, G. Huyberechts, M.O. De Beeck, K. Baert, J. Suls, W. Sansen, P. Jacobs, L. Hermans, Sens. Actuators B 49, 73–80 (1998). https://doi.org/10.1016/S0925-4005(98)00128-2

    Article  Google Scholar 

  80. S.G. Dastider, S. Barizuddin, M. Dweik, M. Almasri, RSC Adv. 3, 26297–26306 (2013). https://doi.org/10.1039/C3RA44724C

    Article  CAS  Google Scholar 

  81. E.G. Bakhoum, M.H. Cheng, IEEE Sens. J. 15, 1482–1488 (2014). https://doi.org/10.1109/JSEN.2014.2364187

    Article  CAS  Google Scholar 

  82. R. Fenner, E. Zdankiewicz, IEEE Sens. J. 1, 309–317 (2001). https://doi.org/10.1109/7361.983470

    Article  CAS  Google Scholar 

  83. L. Kumar, T. Islam, S. Mukhopadhyay, Electronics 6, 41 (2017). https://doi.org/10.3390/electronics6020041

    Article  CAS  Google Scholar 

  84. Z.-S. Feng, X.-J. Chen, J.-J. Chen, J. Hu, J. Phys. D 45, 225305 (2012). https://doi.org/10.1088/0022-3727/45/22/225305

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIP, 2019R1H1A2086726 and 2020R1A2C1011433) and Jeju Sea Grant College Program funded by the Ministry of Oceans and Fisheries supported this work. This research was supported by the 2020 Scientific Promotion Program funded by Jeju National University.

Author information

Authors and Affiliations

Authors

Contributions

MUK fabricated the sensor and performed the experimental results. MA performed the simulation. MUK, MA, and TEC presented the methodology and discussed the results. MUK, MA, and TEC prepared the original draft. AH and JB supervised the research.

Corresponding author

Correspondence to Jinho Bae.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 570 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.U., Awais, M., Chattha, T.E. et al. All printed wide range humidity sensor array combining MoSe2 and PVOH in series. J Mater Sci: Mater Electron 31, 7683–7697 (2020). https://doi.org/10.1007/s10854-020-03304-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03304-y

Navigation