Skip to main content
Log in

Ni nanoparticle-carbonized bacterial cellulose composites for the catalytic reduction of highly toxic aqueous Cr(VI)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we report a facile technique to prepare Ni nanoparticle-carbonized bacterial cellulose (Ni@CBC) composites by pyrolysis bacterial cellulose adsorbing corresponding nickel(II) nitrates. The introduction of carbonized bacterial cellulose served as a reductant for the conversion of Ni(II) to Ni as well as a support for Ni NPs to prevent the agglomeration. The synthesized composite material was tested as a catalyst to reduce toxic Cr(VI) to Cr(III) at room temperature, and UV–Vis spectrophotometry was employed to monitor the reduction process. According to the results, the Ni@CBC material showed good stability and highly catalytic activity at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Danyang, D. Yimin, Z. Jiaqi, W. Shengyun, L. Qi, C. Ling, Sandwich-type ferrocene-functionalized magnetic nanoparticles: synthesis, characterization, and the adsorption of Cr(VI). J. Mater. Sci.: Mater. Electron. 30, 13924–13932 (2019)

    Google Scholar 

  2. L. Liu, J. Xue, X. Shan, G. He, X. Wang, H. Chen, In-situ preparation of three-dimensional Ni@graphene-Cu composites for ultrafast reduction of Cr(VI) at room temperature. Catal. Commun. 75, 13–17 (2016)

    Article  CAS  Google Scholar 

  3. C. Mystrioti, A. Xenidis, N. Papassiopi, Application of iron nanoparticles synthesized by green tea for the removal of hexavalent chromium in column tests. J. Geosci. Environ. Prot. 2, 28–36 (2014)

    Google Scholar 

  4. P. Veerakumar, P. Thanasekaran, K.C. Lin, S.B. Liu, Biomass derived sheet-like carbon/palladium nanocomposite: an excellent opportunity for reduction of toxic hexavalent chromium. ACS Sustain. Chem. Eng. 5, 5302–5312 (2017)

    Article  CAS  Google Scholar 

  5. M. Vospernik, A. Pintar, J. Levec, Application of a catalytic membrane reactor to catalytic wet air oxidation of formic acid. Chem. Eng. Process. 45, 404–414 (2006)

    Article  CAS  Google Scholar 

  6. M. Celebi, M. Yurderi, A. Bulut, M. Kaya, M. Zahmakiran, Palladium nanoparticles supported on amine-functionalized SiO2 for the catalytic hexavalent chromium reduction. Appl. Catal. B 180, 53–64 (2016)

    Article  CAS  Google Scholar 

  7. A. Dandapat, D. Jana, G. De, Pd nanoparticles supported mesoporous gamma-Al(2)O(3) film as a reusable catalyst for reduction of toxic Cr(VI) to Cr(III) in aqueous solution. Appl. Catal. A 396, 34–39 (2011)

    Article  CAS  Google Scholar 

  8. M.A. Omole, I.O. K’Owino, O.A. Sadik, Palladium nanoparticles for catalytic reduction of Cr(VI) using formic acid. Appl. Catal. B 76, 158–167 (2007)

    Article  CAS  Google Scholar 

  9. S.H. Wu, D.H. Chen, Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J Colloid Interface Sci. 259, 282–286 (2003)

    Article  CAS  Google Scholar 

  10. W. Qin, Y. Guo, D. Wang, X. Liu, X. Wang, W. Liu, Synthesis, characterization of nickel@carbon dots hybrid material and application in reduction Cr (VI). New J. Chem. 38, 5861–5867 (2014)

    Article  Google Scholar 

  11. K. Bhowmik, A. Mukherjee, M.K. Mishra, G. De, Stable Ni nanoparticle-reduced graphene oxide composites for the reduction of highly toxic aqueous Cr(VI) at room temperature. Langmuir 30, 3209–3216 (2014)

    Article  CAS  Google Scholar 

  12. D. Klemm, B. Heublein, H.P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Edn. 44, 3358–3393 (2005)

    Article  CAS  Google Scholar 

  13. H.-W. Liang, Q.-F. Guan, Z. Zhu, L.-T. Song, H.-B. Yao, X. Lei, S.-H. Yu, Highly conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia Mater. 4, e19–e19 (2012)

    Article  Google Scholar 

  14. L.F. Chen, Z.H. Huang, H.W. Liang, H.L. Gao, S.H. Yu, Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv. Funct. Mater. 24, 5104–5111 (2014)

    Article  CAS  Google Scholar 

  15. Y. Huang, T. Wang, M. Ji, J. Yang, C. Zhu, D. Sun, Simple preparation of carbonized bacterial cellulose–Pt composite as a high performance electrocatalyst for direct methanol fuel cells (DMFC). Mater. Lett. 128, 93–96 (2014)

    Article  CAS  Google Scholar 

  16. Z.Y. Wu, H.W. Liang, C. Li, B.C. Hu, X.X. Xu, Q. Wang, J.F. Chen, S.H. Yu, Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels. Nano Res. 7, 1861–1872 (2014)

    Article  CAS  Google Scholar 

  17. H.W. Liang, Z.Y. Wu, L.F. Chen, C. Li, S.H. Yu, Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 11, 366–376 (2015)

    Article  CAS  Google Scholar 

  18. B. Ma, Y. Huang, C. Zhu, C. Chen, X. Chen, M. Fan, D. Sun, Novel Cu@SiO2/bacterial cellulose nanofibers: preparation and excellent performance in antibacterial activity. Mater. Sci. Eng. C 62, 656–661 (2016)

    Article  CAS  Google Scholar 

  19. S.A. Almuhtaseb, J.A. Ritter, Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv. Mater. 15, 101–114 (2010)

    Article  Google Scholar 

  20. A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939)

    Article  CAS  Google Scholar 

  21. W. Wei, S. Ying, L. Bing, S. Wang, M. Cao, Porous carbon nanofiber webs derived from bacterial cellulose as an anode for high performance lithium ion batteries. Carbon 91, 56–65 (2015)

    Article  Google Scholar 

  22. M. Bystrzejewski, Z. Karoly, J. Szepvolgyi, W. Kaszuwara, A. Huczko, H. Lange, Continuous synthesis of carbon-encapsulated magnetic nanoparticles with a minimum production of amorphous carbon. Carbon 47, 2040–2048 (2009)

    Article  CAS  Google Scholar 

  23. Z. Lin, G. Waller, L. Yan, M. Liu, C.I. Wong, Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv. Energy Mater. 2, 884–888 (2012)

    Article  CAS  Google Scholar 

  24. C.Y. Li, Y.Z. Wan, J. Wang, Y.L. Wang, X.Q. Jiang, L.M. Han, Antibacterial pitch-based activated carbon fiber supporting silver. Carbon 36, 61–65 (1998)

    Article  CAS  Google Scholar 

  25. J. Park, E. Kang, S.U. Son, H.M. Park, M.K. Lee, J. Kim, K.W. Kim, H.J. Noh, J.H. Park, C.J. Bae, Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv. Mater. 17, 429–434 (2005)

    Article  CAS  Google Scholar 

  26. A. Dandapat, D. Jana, G. De, Pd nanoparticles supported mesoporous gamma-Al2O3 film as a reusable catalyst for reduction of toxic Cr(VI) to Cr(III) in aqueous solution. Appl. Catal. A 396, 34–39 (2011)

    Article  CAS  Google Scholar 

  27. B.J. Borah, H. Saikia, P. Bharali, Reductive conversion of Cr(VI) to Cr(III) over bimetallic CuNi nanocrystals at room temperature. New J. Chem. 38, 2748–2751 (2014)

    Article  CAS  Google Scholar 

  28. M. Liang, R. Su, W. Qi, Y. Zhang, R. Huang, Y. Yu, L. Wang, Z. He, Reduction of hexavalent chromium using recyclable Pt/Pd nanoparticles immobilized on procyanidin-grafted eggshell membrane. Ind. Eng. Chem. Res. 53, 13635–13643 (2014)

    Article  CAS  Google Scholar 

  29. Y. Wang, J. Ren, K. Deng, L. Gui, Y. Tang, Preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media. Chem. Mater. 31, 1622–1627 (2000)

    Article  Google Scholar 

  30. Y. Li, S. Zhu, Q. Liu, Z. Chen, J. Gu, C. Zhu, T. Lu, D. Zhang, J. Ma, N-doped porous carbon with magnetic particles formed in situ for enhanced Cr(VI) removal. Water Res. 47, 4188–4197 (2013)

    Article  CAS  Google Scholar 

  31. D. Park, Y.S. Yun, J.M. Park, XAS and XPS studies on chromium-binding groups of biomaterial during Cr(VI) biosorption. J. Colloid Interface Sci. 317, 54–61 (2008)

    Article  CAS  Google Scholar 

  32. Z.Y. Wu, H.W. Liang, L.F. Chen, B.C. Hu, S.H. Yu, Bacterial cellulose: a robust platform for design of three dimensional carbon-based functional nanomaterials. Acc. Chem. Res. 49, 96–105 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (51702162 and 51873087), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (17KJB530002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongping Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, B., Chaudhary, J.P., Zhu, J. et al. Ni nanoparticle-carbonized bacterial cellulose composites for the catalytic reduction of highly toxic aqueous Cr(VI). J Mater Sci: Mater Electron 31, 7044–7052 (2020). https://doi.org/10.1007/s10854-020-03270-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03270-5

Navigation