Skip to main content
Log in

Enhanced thermal conductivity of poly(lactic acid)/alumina composite by synergistic effect of tuning crystallization of poly(lactic acid) crystallization and filler content

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thermally conductive polymer-based composites have drawn significant interest in the field of heat management. Herein, taking polylactic acid/alumina (PLA/Al2O3) composite as the research system, we investigated the influences of the content of Al2O3 and the crystallinity of PLA on the thermal conductivity of PLA/Al2O3 composite, and discussed the synergistic effect between the matrix crystallinity and the filler content and the corresponding thermal conduction mechanism. Results show that Al2O3 plays a heterogeneous nucleation role in crystallization of PLA, which significantly accelerates the crystallization rate and improves the crystallinity of PLA. Both crystallinity of PLA matrix and Al2O3 content contribute to the final thermal conductivity of the composite. When the filler content is lower than 50 wt%, the improvement of thermal conductivity for composite is mainly determined by Al2O3 content, and contribution from the crystallinity of PLA is very limited. When the Al2O3 content is higher than 60 wt%, which is sufficient to format a heat conduction network in the matrix, the high crystallinity of PLA combined with high filler content brings a synergistic effect and significantly enhances the final thermal conductivity of the composite. For composite of PLA containing 70 wt% Al2O3, when the crystallinity of PLA matrix increases from 4.63 to 59.8%, the corresponding thermal conductivity of the PLA/Al2O3 composite enhanced by 26.8% from 0.82 to 1.04 W m−1 K−1, which is more than 5 times higher than that of neat PLA. Such a remarkable improvement in thermal conductivity only by changing matrix structure without further adding fillers is of great significance for polymer-based thermally conductive composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.N. Leung, Thermally conductive polymer composites and nanocomposites: processing-structure-property relationships. Compos. B 150, 78–92 (2018)

    Article  CAS  Google Scholar 

  2. A. Ma, J. Gu, W. Chen, Thermal conductivity polypropylene/aluminium nitride composites. Adv. Mater. Res. 194, 1577–1580 (2011)

    Article  Google Scholar 

  3. R. Bao, S. Yan, R. Wang et al., Experimental and theoretical studies on the adjustable thermal properties of epoxy composites with silver-plated short fiberglass. J. Appl. Polym. Sci. 134, 45555–45561 (2017)

    Article  Google Scholar 

  4. N. Bagotia, V. Choudhary, D.K. Sharma, Studies on toughened polycarbonate /multiwalled carbon nanotubes nanocomposites. Compos. B 124, 101–110 (2017)

    Article  CAS  Google Scholar 

  5. K. Zhang, G.D. Xiao, Z. Zeng et al., A novel thermally conductive transparent die attach adhesive for high performance LED. Mater. Lett. 235, 216–219 (2019)

    Article  CAS  Google Scholar 

  6. H.N. Guo, B.Y. Wen, Progress on research and application for filled thermal conductive polymeric composites. Eng. Plast. Appl. 42, 106–110 (2014)

    CAS  Google Scholar 

  7. X.L. Zheng, B.Y. Wen, Practical PBT/PC/GNP composites with anisotropic thermal conductivity. RSC Adv. 9, 36316–36323 (2019)

    Article  CAS  Google Scholar 

  8. J. Gu, J. Du, J. Dang et al., Thermal conductivities, mechanical and thermal properties of graphite nanoplatelets/polyphenylene sulfide composites. RSC Adv. 4, 22101–22105 (2014)

    Article  CAS  Google Scholar 

  9. S. Yang, W. Li, S. Bai et al., Fabrication of morphologically controlled composites with high thermal conductivity and dielectric performance from aluminum nanoflake and recycled plastic package. ACS Appl. Mater. Interface 11, 3388–3399 (2018)

    Article  Google Scholar 

  10. F. Wang, X. Cai, Improvement of mechanical properties and thermal conductivity of carbon fiber laminated composites through depositing graphene nanoplatelets on fibers. J. Mater. Sci. 54, 3847–3862 (2018)

    Article  Google Scholar 

  11. V.V. Vysotsky, V.I. Roldughin, Aggregate structure and percolation properties of metal-filled polymer films. Colloid Surf. A 160, 171–180 (1999)

    Article  CAS  Google Scholar 

  12. Y. Hu, G. Du, N. Chen, A novel approach for Al2O3/epoxy composites with high strength and thermal conductivity. Compos. Sci. Technol. 124, 36–43 (2016)

    Article  CAS  Google Scholar 

  13. S.G. Mosanenzadeh, S. Khalid, Y. Cui et al., High thermally conductive PLA based composites with tailored hybrid network of hexagonal boron nitride and graphene Nano platelets. Polym. Compos. 37, 2196–2205 (2016)

    Article  CAS  Google Scholar 

  14. J. Che, M. Jing, D. Liu, K. Wang, Q. Fu, Largely enhanced thermal conductivity of HDPE/boron nitride/carbon nanotubes ternary composites via filler network-network synergy and orientation. Compos. A 112, 32–39 (2018)

    Article  CAS  Google Scholar 

  15. L.B. Ma, B.Y. Wen, Y.H. Zhang, Research on polypropylene based thermally conductive composites filled with GNP and Al2O3. Eng. Plast. Appl. 46, 10–16 (2018)

    Google Scholar 

  16. W.Q. Zou, B.Y. Wen, Y. Zhang, Effects of transesterification on thermal conductivity of PBT/PC/Al2O3 composites. Acta Polym. Sin. 5, 606–613 (2016)

    Google Scholar 

  17. S. Deng, J. Wang, G. Zong et al., Effect of chain structure on the thermal conductivity of expanded graphite/polymer composites. RSC Adv. 6, 10185–10191 (2016)

    Article  CAS  Google Scholar 

  18. S.H. Su, Y. Huang, S. Qu et al., Microdiamond/PLA composites with enhanced thermal conductivity through improving filler/matrix interface compatibility. Diamond Relat. Mater. 81, 161–167 (2018)

    Article  CAS  Google Scholar 

  19. C. Fu, Q. Li, J. Lu et al., Improving thermal conductivity of polymer composites by reducing interfacial thermal resistance between boron nitride nanotubes. Compos. Sci. Technol. 165, 322–330 (2018)

    Article  CAS  Google Scholar 

  20. M. Cao, J. Shu, P. Chen et al., Orientation of boron nitride nanosheets in CM/EPDM Co-continuous blends and their thermal conductive properties. Polym. Test 69, 208–213 (2018)

    Article  CAS  Google Scholar 

  21. C. Pan, J. Zhang, K. Kou et al., Investigation of the through-plane thermal conductivity of polymer composites with in-plane oriented hexagonal boron nitride. Int. J. Heat Mass Transfer 120, 1–8 (2018)

    Article  CAS  Google Scholar 

  22. H. Wang, D. Ding, Q. Liu et al., Highly anisotropic thermally conductive polyimide composites via the alignment of boron nitride platelets. Compos. B 158, 311–318 (2019)

    Article  CAS  Google Scholar 

  23. Y. Ouyang, G. Hou, L. Bai et al., Constructing continuous networks by branched alumina for enhanced thermal conductivity of polymer composites. Compos Sci Technol 165, 307–313 (2018)

    Article  CAS  Google Scholar 

  24. B.Y. Wen, X.L. Zheng, Effect of the selective distribution of graphite nanoplatelets on the electrical and thermal conductivities of a polybutylene terephthalate/polycarbonate blend. Compos. Sci. Technol. 174, 68–75 (2019)

    Article  CAS  Google Scholar 

  25. J. Yu, B. Sundqvist, B. Tonpheng et al., Thermal conductivity of highly crystallized polyethylene. Polymer 55, 195–200 (2014)

    Article  CAS  Google Scholar 

  26. L. Bai, X. Zhao, R.Y. Bao et al., Effect of temperature, crystallinity and molecular chain orientation on the thermal conductivity of polymers: a case study of PLLA. J. Mater. Sci. 53, 10543–10553 (2018)

    Article  CAS  Google Scholar 

  27. R.-C. Zhang, Z. Huang, D. Sun et al., New insights into thermal conductivity of uniaxially stretched high density polyethylene films. Polymer 154, 42–47 (2018)

    Article  CAS  Google Scholar 

  28. T. Zhao, X. Zhang, Enhanced thermal conductivity of PE/BN composites through controlling crystallization behavior of PE matrix. Polym. Compos. 38, 2806–2813 (2015)

    Article  Google Scholar 

  29. D.M. Bigg, Metal-Flled Polymers (Marcel Dekker, New York, 1986)

    Google Scholar 

  30. W.Q. Zou, B.Y. Wen, Influence factors of the thermal conductivity for a filled thermal conductive polymeric composite. Polym. Mater. Sci. Eng. 31, 178–183 (2015)

    CAS  Google Scholar 

  31. Y. Agari, T. Uno, Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci. 32, 5705–5712 (1986)

    Article  CAS  Google Scholar 

  32. P. Zhang, P. Yuan, X. Jiang et al., A theoretical review on interfacial thermal transport at the nanoscale. Small 14, 1702769–1702787 (2018)

    Article  Google Scholar 

  33. W.Y. Zhou, X.W. Ding, Thermal conductive polymer materials (National Defense Industry Press, Beijing, 2014)

    Google Scholar 

  34. T.B. Lewis, L.E. Nielsen, Dynamic mechanical properties of particulate-filled composites. J. Appl. Polym. Sci. 14, 1449–1471 (1970)

    Article  CAS  Google Scholar 

  35. M.X. Li, P.B. Liu, P. Fan et al., Effects of alumina on crystallization and thermal conductivity properties of polyethylene. China Plast. 23, 49–52 (2009)

    CAS  Google Scholar 

  36. A. Bakour, M. Baitoul, E. Faulques et al., Thermal stability and structural study of the poly (3-hexyl thiophene)/HiPCO single walled carbon nanotubes (P3HT/SWCNT) nanocomposites. Eur. Phys. J. 74, 24609 (2016)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Project of Innovative research team of new functional materials of Beijing Technology and Business University for the financial support to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bianying Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, B., Ma, L., Zou, W. et al. Enhanced thermal conductivity of poly(lactic acid)/alumina composite by synergistic effect of tuning crystallization of poly(lactic acid) crystallization and filler content. J Mater Sci: Mater Electron 31, 6328–6338 (2020). https://doi.org/10.1007/s10854-020-03189-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03189-x

Navigation