Skip to main content
Log in

The influence of the pyramidal texture uniformity and process optimization on monocrystalline silicon solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To improve the photoelectric conversion efficiency of monocrystalline silicon solar cells, the influence of the pyramidal texture uniformity on the defects in the monocrystalline silicon cells was analyzed by simulation, and the uniformity of the pyramidal texture was quantitatively characterized with the uniformity coefficient. The texturing process parameters were optimized by fitting and optimizing the uniformity coefficient. In the experiments herein, four groups of textured monocrystalline silicon wafers were obtained by treating them with a 1.2% sodium hydroxide (NaOH) solution for four different times. The uniformity coefficient of each monocrystalline silicon wafer group was obtained. By fitting the uniformity coefficient, we obtained the texturing process parameters corresponding to the maximum uniformity coefficient. The experimental results show that the optimized monocrystalline silicon cell achieved a pyramidal texture with a maximum uniformity coefficient. In addition, the reflectivity of the monocrystalline silicon cell reached a minimum value, and the photoelectric conversion efficiency reached a maximum value. The uniformity coefficient can not only effectively quantify the uniformity of the pyramidal texture but also effectively optimize the texturing process parameters to improve the photoelectric conversion efficiency of monocrystalline silicon cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.F. Abdullah, M.A. Alghoul, H. Naser et al., Renew. Sustain. Energy Rev. 66, 380 (2016). https://doi.org/10.1016/j.rser.2016.07.065

    Article  CAS  Google Scholar 

  2. F. Ye, Y. Li, X. Jia et al., Sol. Energy Mater. Sol. Cells 190, 30 (2019). https://doi.org/10.1016/j.solmat.2018.10.00

    Article  CAS  Google Scholar 

  3. M.A. Green, Sol. Energy Mater. Sol. Cells 143, 190 (2015). https://doi.org/10.1016/j.solmat.2015.06.055

    Article  CAS  Google Scholar 

  4. T. Dullweber, J. Schmidt, IEEE J. Photovolt. 6, 1366 (2016). https://doi.org/10.1109/jphotov.2016.2571627

    Article  Google Scholar 

  5. A. Blakers, IEEE J. Photovolt. 9, 629 (2019). https://doi.org/10.1109/jphotov.2019.2899460

    Article  Google Scholar 

  6. Y. Lv, Y.F. Zhuang, W.J. Wang et al., Sol. Energy Mater. Sol. Cells (2020). https://doi.org/10.1016/j.solmat.2019.110202

    Article  Google Scholar 

  7. F.M.M. Souren, J. Rentsch, M.C.M. van de Sanden, Prog. Photovolt. Res. Appl. 23, 352 (2015). https://doi.org/10.1002/pip.2439

    Article  CAS  Google Scholar 

  8. J. Escarré, K. Söderström, M. Despeisse et al., Sol. Energy Mater. Sol. Cells 98, 185 (2012). https://doi.org/10.1016/j.solmat.2011.10.031

    Article  CAS  Google Scholar 

  9. A. Stapf, F. Honeit, C. Gondek, E. Kroke, Sol. Energy Mater. Sol. Cells 159, 112 (2017). https://doi.org/10.1016/j.solmat.2016.08.034

    Article  CAS  Google Scholar 

  10. H. Kim, S. Park, S.M. Kim et al., Curr. Appl. Phys. 13, S34 (2013). https://doi.org/10.1016/j.cap.2013.01.008

    Article  Google Scholar 

  11. A. Khanna, P.K. Basu, A. Filipovic et al., Sol. Energy Mater. Sol. Cells 132, 589 (2015). https://doi.org/10.1016/j.solmat.2014.10.018

    Article  CAS  Google Scholar 

  12. Y.F. Zhuang, S.H. Zhong, X.J. Liang, H.J. Kang, Z.P. Li, W.Z. Shen, Sol. Energy Mater. Sol. Cells 193, 379 (2019). https://doi.org/10.1016/j.solmat.2019.01.038

    Article  CAS  Google Scholar 

  13. X. Dai, T. Chen, H. Cai, H. Wen, Y. Sun, ACS Appl. Mater. Interfaces 8, 14572 (2016). https://doi.org/10.1021/acsami.6b03164

    Article  CAS  Google Scholar 

  14. A. Dewasi, A. Mitra, J. Mater. Sci.: Mater. Electron. 29, 9209 (2018). https://doi.org/10.1007/s10854-018-8949-8

    Article  CAS  Google Scholar 

  15. C.-H. Hsu, C.-W. Huang, Y.-S. Cho et al., Surf. Coat. Technol. 358, 968 (2019). https://doi.org/10.1016/j.surfcoat.2018.12.016

    Article  CAS  Google Scholar 

  16. X. Ma, Z. Liu, H. Liao et al., in 2011 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 25–28 March, p. 1 2011. https://doi.org/10.1109/APPEEC.2011.5748892

  17. K. Chen, Y. Liu, X. Wang, L. Zhang, X. Su, Sol. Energy Mater. Sol. Cells 133, 148 (2015). https://doi.org/10.1016/j.solmat.2014.11.016

    Article  CAS  Google Scholar 

  18. Q. Che, H. Yang, L. Lu, Y. Wang, J. Alloys Compd. 549, 221 (2013). https://doi.org/10.1016/j.jallcom.2012.09.080

    Article  CAS  Google Scholar 

  19. L. Wang, F. Wang, X. Zhang et al., J. Power Sources 268, 619 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.088

    Article  CAS  Google Scholar 

  20. B.-R. Huang, Y.-K. Yang, W.-L. Yang, Appl. Surf. Sci. 266, 245 (2013). https://doi.org/10.1016/j.apsusc.2012.12.001

    Article  CAS  Google Scholar 

  21. H. Park, S. Kwon, J.S. Lee, H.J. Lim, S. Yoon, D. Kim, Sol. Energy Mater. Sol. Cells 93, 1773 (2009). https://doi.org/10.1016/j.solmat.2009.06.012

    Article  CAS  Google Scholar 

  22. P.K. Basu, D. Sarangi, K.D. Shetty, M.B. Boreland, Sol. Energy Mater. Sol. Cells 113, 37 (2013). https://doi.org/10.1016/j.solmat.2013.01.037

    Article  CAS  Google Scholar 

  23. P.K. Basu, A. Khanna, Z. Hameiri, Renew. Energy 78, 590 (2015). https://doi.org/10.1016/j.renene.2015.01.058

    Article  CAS  Google Scholar 

  24. Z. Xu, X. Xu, C. Cui, H. Huang, Sol. Energy 191, 210 (2019). https://doi.org/10.1016/j.solener.2019.08.028

    Article  CAS  Google Scholar 

  25. P.J. Cousins, J.E. Cotter, Sol. Energy Mater. Sol. Cells 90, 228 (2006). https://doi.org/10.1016/j.solmat.2005.03.008

    Article  CAS  Google Scholar 

  26. H.B.T. Li, R.H. Franken, J.K. Rath, R.E.I. Schropp, Sol. Energy Mater. Sol. Cells 93, 338 (2009). https://doi.org/10.1016/j.solmat.2008.11.013

    Article  CAS  Google Scholar 

  27. M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, C. Ballif, Sol. Energy Mater. Sol. Cells 93, 1714 (2009). https://doi.org/10.1016/j.solmat.2009.05.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51676085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilong Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Z., Xu, Z., Wang, D. et al. The influence of the pyramidal texture uniformity and process optimization on monocrystalline silicon solar cells. J Mater Sci: Mater Electron 31, 6295–6303 (2020). https://doi.org/10.1007/s10854-020-03185-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03185-1

Navigation