Skip to main content
Log in

Effect of yttrium doping on the structure, dielectric multiferroic and magnetodielectric properties of Bi5Ti3FeO15 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multiferroic Bi5−xYxTi3FeO15 (BYTF-x, x = 0, 0.1, 0.3, 0.5, 0.7) ceramics were synthesized through the conventional solid-state reaction. The structure, dielectric, multiferroic and magnetodielectric properties of BYTF-x were investigated in detail. X-ray diffraction confirmed that all the samples were layered Aurivillius structure. Upon increasing Y content, the grain size of samples slightly decreases. The dielectric permittivity increased with Y doped. The Y doping has no effect on microstructural changes of plate-like grains which verified though field-emission scanning electron microscopy. The minimum remanent polarization (2Pr = 2.48 μc/cm2) was observed in BYTF-0.3 ceramic and the maximum magnetodielectric coefficient value of 1.23% was obtained in BYTF-0.3 ceramic perhaps result from the coexistence of Fe2+ and Fe3+. Additionally, weak ferromagnetic is only found in BYTF-0.3 ceramic. The ferromagnetism can be attributed to ferromagnetic double exchange interactions (Fe2+–O–Fe3+) and the spin canting of tilting FeO6 octahedra via the Dzyaloshinskii–Moriya interaction. These results indicate that Y doping Aurivillius phase may be the potential candidates for exploring superior room-temperature multiferroics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Pikula, J. Dzik, P. Guzdek, V.I. Mitsiuk, Z. Surowiec, R. Panek, E. Jartych, Magnetic properties and magnetoelectric coupling enhancement in Bi5Ti3FeO15 ceramics. Ceram. Int. 43, 11442–11449 (2017)

    CAS  Google Scholar 

  2. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D 36, 123 (2005)

    Google Scholar 

  3. Y. Pu, J. Li, X. Wang, Y. Shi, R. Shi, M. Yang, W. Wang, X. Guo, X. Peng, Strong non-volatile voltage control of magnetization and the magnetodielectric properties in polymer-based sandwich-structured composites. Compos. Sci. Technol. 186, 107931 (2020)

    CAS  Google Scholar 

  4. X.Q. Chen, Z.G. Lu, F. Huang, J. Min, J.H. Li, J. Xiao, F.J. Yang, X.B. Zeng, Molten salt synthesis and magnetic anisotropy of multiferroic Bi4NdTi3Fe0.7Ni0.3O15 ceramics. J. Alloys. Compd. 693, 448–453 (2017)

    CAS  Google Scholar 

  5. Z.X. Cheng, X.L. Wang, S.X. Dou, H. Kimura, K. Ozawa, Enhancement of ferroelectricity and ferromagnetism in rare earth element doped BiFeO3. J. Appl. Phys. 104, 116109 (2008)

    Google Scholar 

  6. R.D. Johnson, L.C. Chapon, D.D. Khalyavin, P. Manuel, P.G. Radaelli, C. Martin, Giant improper ferroelectricity in the ferroaxial magnet CaMn7O12. Phys. Rev. Lett. 108, 067201 (2012)

    CAS  Google Scholar 

  7. X.Q. Chen, J. Xiao, Y. Xue, X.B. Zeng, F.J. Yang, P. Su, Room temperature multiferroic properties of Ni-doped Aurivillus phase Bi5Ti3FeO15. Ceram. Int. 40, 2635–2639 (2014)

    CAS  Google Scholar 

  8. S.K. Kim, M. Miyayama, H. Yanagida, Electrical anisotropy and a plausible explanation for dielectric anomaly of Bi4Ti3O12 single crystal. Mater. Res. Bull 31, 121–131 (1996)

    CAS  Google Scholar 

  9. X.W. Dong, K.F. Wang, J.G. Wan, J.S. Zhu, J.M. Liu, Magnetocapacitance of polycrystalline Bi5Ti3FeO15 prepared by sol-gel method. J. Appl. Phys. 103, 094101 (2008)

    Google Scholar 

  10. G. Chen, S. Lin, Q. Ren, W.F. Xu, Y.J. Tang, B. Wei, C.G. Duan, J.H. Chu, W. Jing, Processing optimization and sintering time dependent magnetic and optical behaviors of Aurivillius Bi5Ti3FeO15 ceramics. J. Appl. Phys. 113, 391 (2013)

    Google Scholar 

  11. A. Srinivas, S.V. Suryanarayana, G.S. Kumar, M. Kumar, Magnetoelectric measurements on Bi5Ti3FeO15 and Bi6Fe2Ti3O18. J. Phys. Condens. Mater. 11, 3335 (1999)

    CAS  Google Scholar 

  12. W. Bai, Y.Q. Gao, J.Y. Zhu, X.J. Meng, T. Lin, Electrical, magnetic, and optical properties in multiferroic Bi5Ti3FeO15 thin films prepared by a chemical solution deposition route. J. Appl. Phys. 109, 391 (2011)

    Google Scholar 

  13. X.Y. Mao, W. Wang, X.B. Chen, Y.L. Lu, Multiferroic properties of layer-structured Bi5Fe0.5Co0.5Ti3O1.5 ceramics. Appl. Phys. Lett. 95, 082901 (2009)

    Google Scholar 

  14. X.Q. Chen, J. Xiao, Y. Xue, X.B. Zeng, P.S.F.J. Yang, Room temperature multiferroic properties of Ni-doped Aurivillus phase Bi5Ti3FeO15. Ceram. Int. 40, 2635–2639 (2014)

    CAS  Google Scholar 

  15. X.Q. Chen, Y. Xue, Z.W. Lu, J. Xiao, J. Yao, Z.W. Kang, P. Su, F.J. Yang, X.B. Zeng, H.Z. Sun, Magnetodielectric properties of Bi4NdTi3Fe0.7Co0.3O15 multiferroic system. J. Alloys. Compd. 622, 288–291 (2015)

    CAS  Google Scholar 

  16. L. Luo, W. Wei, X.S. Yuan, K. Shen, M.X. Xu, Q.Y. Xu, Multiferroic properties of Y-doped BiFeO3. J. Alloys. Compd. 540, 36–38 (2012). https://doi.org/10.1016/j.jallcom.2012.06.106

    Article  CAS  Google Scholar 

  17. M. Zhong, N.P. Kumar, E. Sagar, Z. Jian, H. Yemin, P.V. Reddy, Structural, magnetic and dielectric properties of Y doped BiFeO3. Mater. Chem. Phys. 173, 126–131 (2016)

    CAS  Google Scholar 

  18. C.H. Hervoches, A. Snedden, R. Riggs, S.H. Kilcoyne, P. Manuel, P. Lightfoot, Structural behavior of the four-layer Aurivillius-phase ferroelectrics SrBi4Ti4O15 and Bi5Ti3FeO15. J. Solid. State. Chem. 164, 280–291 (2002)

    CAS  Google Scholar 

  19. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Crystallogr. 32, 751–767 (1976)

    Google Scholar 

  20. J. Paul, S. Bhardwaj, K.K. Sharma, R.K. Kotnala, R. Kumar, Room temperature multiferroic behaviour and magnetoelectric coupling in Sm/Fe modified Bi4Ti3O12 ceramics synthesized by solid state reaction method. J. Alloys. Compd. 634, 58–64 (2015)

    CAS  Google Scholar 

  21. F.Z. Huang, W. Zhu, H. Ju, T.X. Chen, Z. Jing, X.M. Lu, J.S. Zhu, Multiferroic and dielectric properties of Bi4LaTi3FeO1.5 ceramics. Ceram. Int. 41, S453–S457 (2015)

    Google Scholar 

  22. D. Dastan, Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol-gel. Appl. Phys. A 123(699), 1–13 (2017)

    CAS  Google Scholar 

  23. D. Dastan, Nanostructured anatase titania thin films prepared by sol-gel dip coating technique. J. Atomic Mol. Condens. Nano Phys. 2(2), 109–114 (2015)

    Google Scholar 

  24. D. Dastan, S.L. Panahi, N.B. Chaure, Characterization of titania thin films grown by dip-coating technique. J. Mater. Sci. 27, 12291–12296 (2016)

    CAS  Google Scholar 

  25. X.T. Yin, W.D. Zhou, J. Li, P. Lv, Q. Wang, D. Wang, F.Y. Wu, D. Dastan, H. Garmestani, Z.C. Shi, S. Tălu, Tin dioxide nanoparticles with high sensitivity and selectivity for gas sensors at sub ppm level of hydrogen gas detection. J. Mater. Sci. 30, 14687–14694 (2019)

    CAS  Google Scholar 

  26. D. Dastan, N. Chaure, M. Kartha, Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation. J. Mater. Sci. 28, 7784–7796 (2017)

    CAS  Google Scholar 

  27. Y. Shi, Y.P. Pu, J.W. Li, R.K. Shi, W. Wang, Q.W. Zhang, L.H. Guo, Structure, dielectric and multiferroic properties of three-layered aurivillius SrBi3Nb2FeO12 ceramics. Ceram. Int 45, 9283–9287 (2019)

    CAS  Google Scholar 

  28. X.T. Zhu, J. Yang, D. Dastan, H. Garmestani, R.H. Fan, Z.C. Shi, Fabrication of core-shell structured Ni@BaTiO3 scaffolds for polymer composites with ultrahigh dielectric constant and low loss. Composites A 125, 105521 (2019)

    Google Scholar 

  29. D. Dastan, A. Banpurkar, Solution processable sol-gel derived titania gate dielectric for organic field effect transistors. J. Mater. Sci. 28(4), 3851–3859 (2016)

    Google Scholar 

  30. D. Dastan, S.W. Gosavi, N.B. Chaure, Studies on electrical properties of hybrid polymeric gate dielectric for field effect transistors. Macromol. Symp. 347, 81–86 (2015)

    CAS  Google Scholar 

  31. K. Tang, W. Bai, J. Liu, J. Yang, C.G. Duan, X.D. Tang, J.H. Chu, The effect of Mn doping contents on the structural, dielectric and magnetic properties of multiferroic Bi5Ti3FeO15 Aurivillius ceramics. Ceram. Int. 41, S185–S190 (2015)

    CAS  Google Scholar 

  32. B. Yuan, J. Yang, J. Chen, X.Z. Zuo, L.H. Yin, X.W. Tang, X.B. Zhu, J.M. Dai, W.H. Song, Y.P. Sun, Magnetic and dielectric properties of Aurivillius phase Bi6Fe2Ti3-2xNbxCoxO18 (0 ≤ x ≤ 0.4). Appl. Phys. Lett. 104, 317 (2014)

    Google Scholar 

  33. S. Kumar, M.M. Suryanarayana, S.V. Bhimasankaram, Investigation of dielectric and magnetic nature of Bi7Fe3Ti3O21. Mater. Res. Bull 34, 989–996 (1999)

    Google Scholar 

  34. L. Zhang, Y. Pu, M. Chen, T. Wei, W. Keipper, R. Shi, X. Guo, R. Li, X. Peng, High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics. J. Eur. Ceram. Soc. 40(1), 71–77 (2020)

    CAS  Google Scholar 

  35. L. Zhang, Y. Pu, M. Chen, T. Wei, X. Peng, Novel Na0.5Bi0.5TiO3 based lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability. Chem. Eng. J. 383, 123154 (2020)

    Google Scholar 

  36. R. Shi, Y. Pu, W. Wang, X. Guo, J. Li, M. Yang, S. Zhou, A novel lead-free NaNbO3–Bi(Zn0.5Ti0.5)O3 ceramics system for energy storage application with excellent stability. J. Alloys. Compd. 815, 152356 (2020)

    CAS  Google Scholar 

  37. L. Zhang, Y. Pu, M. Chen, Ultra-high energy storage performance under low electric fields in Na0.5Bi0.5TiO3-based relaxor ferroelectrics for pulse capacitor applications. Ceram. Int. 46(1), 98–105 (2020)

    CAS  Google Scholar 

  38. L. Zhang, Y. Pu, M. Chen, Influence of BaZrO3 additive on the energy-storage properties of 0.775Na0.5Bi0.5TiO3-0.225BaSnO3 relaxor ferroelectrics. J. Alloys. Compd. 775, 342–347 (2019)

    CAS  Google Scholar 

  39. S. Hui, X.M. Lu, T. Xu, S. Jie, Y. Jin, C.C. Ju, F.Z. Huang, J.S. Zhu, Study of multiferroic properties in Bi5Fe0.5Co0.5Ti3O15 thin films. J. Appl. Phys. 111, 124116 (2012)

    Google Scholar 

  40. H. Zhao, H. Kimura, Z. Cheng, M. Osada, J. Wang, X. Wang, S. Dou, Y. Liu, J. Yu, Large magnetoelectric coupling in magnetically short-range ordered Bi5Ti3FeO15 thin films. Sci. Rep. 4, 5255 (2014)

    CAS  Google Scholar 

  41. X.T. Yin, D. Dastan, F.Y. Wu, J. Li, Facile Synthesis of SnO2/LaFeO3-XNX composite: photocatalytic activity and gas sensing performance. Nanomaterials 9, 1163 (2019)

    CAS  Google Scholar 

  42. D. Dastan, S.L. Panahi, A.P. Yengntiwar, A.G. Banpurkar, Morphological and electrical studies of titania powder and films grown by aqueous solution method. Adv. Sci. Lett. 22(4), 950–953 (2016)

    Google Scholar 

  43. X.T. Yin, W.D. Zhou, J. Li, Q. Wang, F.Y. Wu, D. Dastan, D. Wang, H. Garmestani, X.M. Wang, S. Talu, A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection. J. Alloys. Compd. 805, 229–236 (2019)

    CAS  Google Scholar 

  44. R. Shi, Y. Pu, W. Wang, Y. Shi, J. Li, X. Guo, M. Yang, Flash sintering of barium titanate. Ceram. Int. 45, 7085–7089 (2019)

    CAS  Google Scholar 

  45. B.A. Yaël, E. Claude, Potentially multiferroic Aurivillius phase Bi5FeTi3O15: cation site preference, electric polarization, and magnetic coupling from first principles. Phys. Rev. B 90, 214109 (2014)

    Google Scholar 

  46. H.R. Wu, F.Z. Huang, T. Xu, R.X. Ti, X.M. Lu, K. Yi, X.L. Lv, W.L. Zhu, J.S. Zhu, Magnetic and magnetodielectric properties of Y3−xLaxFe5O12 ceramics. J. Appl. Phys. 117, 787 (2015)

    Google Scholar 

  47. T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960)

    CAS  Google Scholar 

  48. I. Dzyaloshinsky, A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958)

    CAS  Google Scholar 

  49. H. Sun, X.M. Lu, T. Xu, J. Su, Study of multiferroic properties in Bi5Fe0.5Co0.5Ti3O15 thin films. J. Appl. Phys. 111, 124116 (2012)

    Google Scholar 

Download references

Acknowledgements

This work was financed by the National Natural Science Foundation of China (51872175) and the International Cooperation Projects of Shaanxi Province (2018KW-027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongping Pu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Pu, Y., Wang, X. et al. Effect of yttrium doping on the structure, dielectric multiferroic and magnetodielectric properties of Bi5Ti3FeO15 ceramics. J Mater Sci: Mater Electron 31, 4345–4353 (2020). https://doi.org/10.1007/s10854-020-02992-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02992-w

Navigation