Skip to main content
Log in

Polaronic transport in CH3NH3PbI3 single crystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Organic–inorganic hybrid perovskite materials exhibit excellent features in the photovoltaic applications. However, there are still questions unanswered regarding fundamental mechanisms of high-performance perovskite devices. Hall Effect and time-resolved photoluminescence measurements are conducted in our research to reveal the nature of carrier transport in CH3NH3I3 single crystals. We found that the high mobility of the crystals falls with increasing temperature, while the slow recombination rate constant of the crystals increases with increasing temperature. The former supports that coherent transport takes place in the CH3NH3PbI3 single crystals, whereas the latter evidences that photo-induced minority carriers exhibit their heavy effective mass in the transport. The two apparently distinct features are complementary in the description of the nature of polaronic motions in the CH3NH3PbI3 materials. These dynamical considerations depict a large polaron moving slowly while scattering with phonons in the CH3NH3PbI3 single crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Pivrikas, G. Juška, R. Österbacka et al., Langevin recombination and space-charge-perturbed current transients in regiorandom poly (3-hexylthiophene). Phys. Rev. B 71, 125205 (2005)

    Article  Google Scholar 

  2. Q. Chen, H. Zhou, Z. Hong et al., Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2013)

    Article  Google Scholar 

  3. J.S. Manser, J.A. Christians, P.V. Kamat, Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 116, 12956–13008 (2016)

    Article  CAS  Google Scholar 

  4. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  CAS  Google Scholar 

  5. C.C. Stoumpos, M.G. Kanatzidis, The renaissance of halide perovskites and their evolution as emerging semiconductors. Acc. Chem. Res. 48, 2791–2802 (2015)

    Article  CAS  Google Scholar 

  6. H. Zhang, Y. Lv, Y. Guo, X. Tao, C. Yang, X. Zhou, Fully-air processed Al-doped TiO2 nanorods perovskite solar cell using commercial available carbon instead of hole transport materials and noble metal electrode. J. Mater. Sci.: Mater. Electron. 29, 3759–3766 (2018)

    CAS  Google Scholar 

  7. D. Shi, V. Adinolfi, R. Comin et al., Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015)

    Article  CAS  Google Scholar 

  8. T. Miyasaka, Perovskite photovoltaics: rare functions of organo lead halide in solar cells and optoelectronic devices. Chem. Lett. 44, 720–729 (2015)

    Article  CAS  Google Scholar 

  9. B. Zhao, L. Zhu, Y. Zhao et al., Improved performance of perovskite solar cell by controlling CH3NH3PbI3-xClx film morphology with CH3NH3Cl assisted method. J. Mater. Sci.: Mater. Electron. 27, 10869–10876 (2016)

    CAS  Google Scholar 

  10. E.J. Juarez-Perez, M. Wuβler, F. Fabregat-Santiago et al., Role of the selective contacts in the performance of lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 680–685 (2014)

    Article  CAS  Google Scholar 

  11. A. Pivrikas, N.S. Sariciftci, G. Juška, R. Österbacka, A review of charge transport and recombination in polymer/fullerene organic solar cells. Prog. Photovolt. Res. Appl. 15, 677–696 (2007)

    Article  CAS  Google Scholar 

  12. Y. Zhao, K. Zhu, Charge transport and recombination in perovskite (CH3NH3)PbI3 sensitized TiO2 solar cells. J. Phys. Chem. Lett. 4, 2880–2884 (2013)

    Article  CAS  Google Scholar 

  13. E. Schiff, Diffusion-controlled bimolecular recombination of electrons and holes in a-Si: H. J. Non-Cryst. Solids 190, 1–8 (1995)

    Article  CAS  Google Scholar 

  14. E.M. Hutter, M.C. Gélvez-Rueda, A. Osherov et al., Direct–indirect character of the bandgap in methylammonium lead iodide perovskite. Nat. Mater. 16, 115 (2017)

    Article  CAS  Google Scholar 

  15. A.D. Wright, C. Verdi, R.L. Milot et al., Electron–phonon coupling in hybrid lead halide perovskites. Nat. Commun. 7, 11755 (2016)

    Article  Google Scholar 

  16. S.D. Stranks, G.E. Eperon, G. Grancini et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013)

    Article  CAS  Google Scholar 

  17. H.J. Snaith, Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013)

    Article  CAS  Google Scholar 

  18. C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014)

    Article  CAS  Google Scholar 

  19. S.D. Stranks, V.M. Burlakov, T. Leijtens, J.M. Ball, A. Goriely, H.J. Snaith, Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2, 034007 (2014)

    Article  Google Scholar 

  20. K. Chaisan, D. Wongratanaphisan, S. Choopun, T. Sagawa, P. Ruankham, Enhanced crystal formation of methylammonium lead iodide via self-assembled monolayers and their solvation for perovskite solar cell. J. Mater. Sci.: Mater. Electron. 30, 939–949 (2019)

    CAS  Google Scholar 

  21. H. Yang, Y. Liu, C. Zhuang et al., Fully band-resolved scattering rate in MgB2 revealed by the nonlinear hall effect and magnetoresistance measurements. Phys. Rev. Lett. 101, 067001 (2008)

    Article  Google Scholar 

  22. Y. Chen, H. Yi, X. Wu et al., Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements. Nat. Commun. 7, 12253 (2016)

    Article  CAS  Google Scholar 

  23. J. Bisquert, I. Mora-Seró, Simulation of steady-state characteristics of dye-sensitized solar cells and the interpretation of the diffusion length. J. Phys. Chem. Lett. 1, 450–456 (2009)

    Article  Google Scholar 

  24. E.M. Hutter, G.E. Eperon, S.D. Stranks, T.J. Savenije, Charge carriers in planar and meso-structured organic–inorganic perovskites: mobilities, lifetimes, and concentrations of trap states. J. Phys. Chem. Lett. 6, 3082–3090 (2015)

    Article  CAS  Google Scholar 

  25. A.J. Neukirch, W. Nie, J.-C. Blancon et al., Polaron stabilization by cooperative lattice distortion and cation rotations in hybrid perovskite materials. Nano Lett. 16, 3809–3816 (2016)

    Article  CAS  Google Scholar 

  26. Z. Zhang, B. Xu, B. Xu et al., External stimuli responsive 2D charge transfer polymers. Adv. Mater. Interfaces 4, 1600769 (2017)

    Article  Google Scholar 

  27. Z. Chen, Y. Wang, Y. Shi, B. Hsu, Z. Yang, J. Shi, Regulating carrier dynamics in single crystal halide perovskite via interface engineering and optical doping. Adv. Electron. Mater. 2, 1600248 (2016)

    Article  Google Scholar 

  28. S.M. Sze, K.K. Ng, Physics of semiconductor devices, 3rd edn. (Wiley, New York, 2006), pp. 150–200

    Book  Google Scholar 

  29. Q. Wang, Y. Shao, H. Xie et al., Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl. Phys. Lett. 105, 163508 (2014)

    Article  Google Scholar 

  30. Y. Liu, Z. Yang, S. Liu et al., Recent progress in single-crystalline perovskite research including crystal preparation, property evaluation, and applications. Adv. Sci. 5, 1700471 (2018)

    Article  Google Scholar 

  31. Z. Xiao, Y. Yuan, Q. Wang et al., Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells. Mater. Sci. Eng. R 101, 1–38 (2016)

    Article  Google Scholar 

  32. F. Staub, H. Hempel, J.-C. Hebig et al., Beyond bulk lifetimes: insights into lead halide perovskite films from time-resolved photoluminescence. Phys. Rev. Appl. 6, 044017 (2016)

    Article  Google Scholar 

  33. M. Maiberg, T. Hölscher, S. Zahedi-Azad, R. Scheer, Theoretical study of time-resolved luminescence in semiconductors. III. Trap states in the band gap. J. Appl. Phys. 118, 105701 (2015)

    Article  Google Scholar 

  34. S.D. Stranks, V.M. Burlakov, T. Leijtens et al., Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2(3), 034007 (2014)

    Article  Google Scholar 

  35. K. Miyata, D. Meggiolaro, M.T. Trinh et al., Large polarons in lead halide perovskites. Sci. Adv. 3(8), e1701217 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The Natural Science Research for Colleges and Universities of Anhui Province, China (Grant No. KJ2019ZD06) supported this work. The authors thank Dr. Yi Rao and Dr. Bradford Wayland for helpful discussions. L.J thanks Dr. Xiaoxing Xi for assisting us to collect Hall effect data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Jin or Shoujun Ding.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 928 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Qian, Y., Zhang, Y. et al. Polaronic transport in CH3NH3PbI3 single crystals. J Mater Sci: Mater Electron 31, 1945–1950 (2020). https://doi.org/10.1007/s10854-019-02713-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02713-y

Navigation