Skip to main content

Advertisement

Log in

Characteristics of down conversion green emitting Ba3Bi2(PO4)4:Tb3+ nanosized particles for advanced illuminating devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nano-scaled green-emitting Ba3Bi2(PO4)4:Tb3+ crystalline series was effectively obtained via very efficient and straightforward combustion-synthesis route for the very first time. The JCPDS data (Card No: 780204) of Ba3Bi2(PO4)4 crystal were used for profiling the diffraction patterns of various mol% samples. The structure and lattice parameters of Ba3Bi1.70Tb0.30(PO4)4 system have been investigated by Rietveld refinement analysis. Further, it was found that incorporation of dopant (Tb3+) ion into the monoclinic crystal lattice of C12/c1 (15) space group symmetry did not induce any major structural changes. Lowering in the optical band-gap value from 4.16 to 4.02 eV was observed when Ba3Bi2(PO4)4 host lattice is doped with 15 mol% of activator ions. The photoluminescence analysis of Ba3Bi2(PO4)4:Tb3+ series at 368 nm excitation yielded the bright green emission due to the 5D4 → 7F5 transition. A maximum in emission intensity is observed corresponding to the Ba3Bi1.70Tb0.30(PO4)4 composition. Critical energy distance (13.235 Å) proposed the existence of energy transfer through multipolar interaction (dipole–dipole) phenomenon, which is cross-verified by Huang analysis (s = 4.94). The value of radiative-lifetime and non-radiative transition rate are calculated to be 2.22 ms and 10.3 s−1, respectively. Furthermore, the very high value of quantum efficiency (97%) and the results of various optical analysis favor the practical utility of down-conversion Ba3Bi1.70Tb0.30(PO4)4 nanophosphor for solid-state and other illuminating devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.G. Shiravizadeh, R. Yousefi, S.M. Elahia, S.A. Sebta, Phys. Chem. Chem. Phys. 19, 18089–18098 (2017)

    Article  CAS  Google Scholar 

  2. R. Devi, M. Dalal, M. Bala, S.P. Khatkar, V.B. Taxak, P. Boora, J. Mater. Sci.: Mater. Electron. 27, 12506–12516 (2016)

    CAS  Google Scholar 

  3. J.D. Dutra, T.D. Bispo, R.O. Freire, J. Comput. Chem. 35, 772–775 (2014)

    Article  CAS  Google Scholar 

  4. A. Chapel, R. Boonsin, G. Chadeyron, D. Boyer, A. Bousquet, R. Mahiou, W. Henrique Cassinelli, C.V. Santilli, S. Therias, New J. Chem. 41, 12006–12013 (2017)

    Article  CAS  Google Scholar 

  5. M. Dalal, V.B. Taxak, S. Chahar, A. Khatkar, S.P. Khatkar, J. Phys. Chem. Solids 89, 45–52 (2016)

    Article  CAS  Google Scholar 

  6. D. Deng, H. Yu, Y. Li, Y. Hua, G. Jia, S. Zhao, H. Wang, L. Huang, Y. Li, C. Li, S. Xu, J. Mater. Chem. C 1, 3194–3199 (2013)

    Article  CAS  Google Scholar 

  7. J. Zhou, Z. Xia, J. Mater. Chem. C 2, 6978–6984 (2014)

    Article  CAS  Google Scholar 

  8. D. Balaji, A. Durairajan, K.K. Rasu, S.M. Babu, J. Lumin. 146, 458–463 (2014)

    Article  CAS  Google Scholar 

  9. N.S. Singh, N.K. Sahu, D. Bahadur, J. Mater. Chem. C 2, 548–555 (2014)

    Article  CAS  Google Scholar 

  10. X. Zhang, L. Zhou, Q. Pang, M. Gong, RSC Adv. 5, 54622–54628 (2015)

    Article  CAS  Google Scholar 

  11. X. Zhang, L. Zhou, M. Gong, Opt. Mater. 35, 993–997 (2013)

    Article  Google Scholar 

  12. K. Omri, A. Alyamani, L.E. Mir, Appl. Phys. A 124, 215 (2018)

    Article  CAS  Google Scholar 

  13. K. Omari, O.M. Lemine, E.M.M. Lassaad, Ceram. Int. 43, 6585–6591 (2017)

    Article  CAS  Google Scholar 

  14. S.K. Ghandomani, B. Khoshnevisan, R. Yousefi, J. Mater. Sci.: Mater. Electron. 29, 18989–18996 (2018)

    Google Scholar 

  15. R. Yousefi, F.J. Sheini, Ceram. Int. 38, 5821–5825 (2012)

    Article  CAS  Google Scholar 

  16. N. Alonizan, S. Rabaoui, K. Omri, R. Qindeel, Appl. Phys. A 124, 710 (2018)

    Article  CAS  Google Scholar 

  17. R. Yousefi, H.R. Azimi, M.R. Mahmoudian, W.J. Basirun, Appl. Surf. Sci. 435, 886–893 (2018)

    Article  CAS  Google Scholar 

  18. G.S.R. Raju, E. Pavitra, G. Nagaraju, X.Y. Guan, J.S. Yu, RSC Adv. 5, 22217–22223 (2015)

    Article  CAS  Google Scholar 

  19. A.N. Yerpude, S.J. Dhoble, Bull. Mater. Sci. 36, 715–717 (2013)

    Article  CAS  Google Scholar 

  20. J. Dalal, M. Dalal, S. Devi, A. Hooda, A. Khatkar, R.K. Malik, V.B. Taxak, S.P. Khatkar, J. Mater. Sci.: Mater. Electron. 30, 17547–17558 (2019)

    CAS  Google Scholar 

  21. R.G. Nair, S. Nigam, V. Sudarsan, R.K. Vatsa, V.K. Jain, J. Lumin. 195, 271–277 (2018)

    Article  CAS  Google Scholar 

  22. S. Chahar, R. Devi, M. Dalal, M. Bala, J. Dalal, P. Boora, V.B. Taxak, R. Lather, S.P. Khatkar, Ceram. Int. 45, 606–613 (2019)

    Article  CAS  Google Scholar 

  23. X. Li, Y. Zhang, D. Geng, J. Lian, G. Zhang, Z. Hou, J. Lin, J. Mater. Chem. C 2, 9924–9933 (2014)

    Article  CAS  Google Scholar 

  24. T. Grzyb, R.J. Wiglusz, A. Gruszeczka, S. Lis, Dalton Trans. 43, 17255–17264 (2014)

    Article  CAS  Google Scholar 

  25. Z. Xia, R.-S. Liu, J. Phys. Chem. C 116, 15604–15609 (2012)

    Article  CAS  Google Scholar 

  26. H. Dahiya, M. Dalal, J. Dalal, V.B. Taxak, S.P. Khatkar, D. Kumar, Mater. Res. Bull. 99, 86–92 (2018)

    Article  CAS  Google Scholar 

  27. S.-D. Sonika, S.P. Han, M. Khatkar, V.B. Kumar, Taxak. Mater. Sci. Eng., B 178, 1436–1442 (2013)

    Article  CAS  Google Scholar 

  28. J. Dalal, M. Dalal, S. Devi, S. Chahar, A. Hooda, A. Khatkar, R.K. Malik, V.B. Taxak, S.P. Khatkar, Methods Appl. Fluoresc. (2019). https://doi.org/10.1088/2050-6120/ab33b6

    Article  Google Scholar 

  29. A. Podhorodecki, M. Nyk, J. Misiewicz, W. Strek, J. Lumin. 126, 219–224 (2007)

    Article  CAS  Google Scholar 

  30. S. Mahlik, E. Cavalli, M. Amer, P. Boutinaud, Phys. Chem. Chem. Phys. 17, 32341–32346 (2015)

    Article  CAS  Google Scholar 

  31. K. Li, M. Shang, D. Geng, H. Lian, Y. Zhang, J. Fan, J. Lin, Inorg. Chem. 53, 6743–6751 (2014)

    Article  CAS  Google Scholar 

  32. H. Yu, J. Chen, Y. Pu, T. Zhang, S. Gan, J. Rare Earths 33, 366–370 (2015)

    Article  CAS  Google Scholar 

  33. F.S. Liu, Q.L. Liu, J.K. Liang, J. Luo, L.T. Yang, G.B. Song, Y. Zhang, L.X. Wang, J.N. Yao, G.H. Rao, J. Alloy. Compd. 425, 278–283 (2006)

    Article  CAS  Google Scholar 

  34. M. Yang, Y. Liang, Q. Gui, B. Zhao, D. Jin, M. Lin, L. Yan, H. You, L. Dai, Y. Liu, Sci. Rep. 5, 11844 (2015)

    Article  CAS  Google Scholar 

  35. W.U. Khan, J. Li, X. Li, Q. Wu, J. Yan, Y. Xu, F. Xie, J. Shi, M. Wu, Dalton Trans. 46, 1885–1891 (2017)

    Article  CAS  Google Scholar 

  36. S. Devi, A. Khatkar, V.B. Taxak, M. Dalal, S. Chahar, J. Dalal, S.P. Khatkar, J. Alloy. Compd. 767, 409–418 (2018)

    Article  CAS  Google Scholar 

  37. M. Jayachandiran, S.M.M. Kennedy, J. Alloys Compd. 775, 353–359 (2018)

    Article  CAS  Google Scholar 

  38. J. Dalal, M. Dalal, S. Devi, R. Devi, A. Hooda, A. Khatkar, V.B. Taxak, S.P. Khatkar, J. Lumin. 210, 293–302 (2019)

    Article  CAS  Google Scholar 

  39. A. Hooda, S.P. Khatkar, A. Khatkar, R.K. Malik, J. Dalal, S. Devi, V.B. Taxak, Mater. Chem. Phys. 232, 39–48 (2019)

    Article  CAS  Google Scholar 

  40. G.K. Behrh, R. Gautier, C. Latouche, S. Jobic, H.S. Brault, Inorg. Chem. 55, 9144–9146 (2016)

    Article  CAS  Google Scholar 

  41. J. Dalal, M. Dalal, S. Devi, A. Hooda, A. Khatkar, V.B. Taxak, S.P. Khatkar, J. Lumin. 216, 116697 (2019)

    Article  CAS  Google Scholar 

  42. R. Brüninghoff, D.D. Engelsen, G.R. Fern, T.G. Ireland, R. Dhillon, J. Silver, RSC Adv. 6, 42561–42571 (2016)

    Article  Google Scholar 

  43. M. Que, Z. Ci, Y. Wang, G. Zhu, S. Xin, Y. Shi, Q. Wang, CrystEngComm 15, 6389–6394 (2013)

    Article  CAS  Google Scholar 

  44. Y. Tian, B. Chen, B. Tian, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, Q. Meng, J. Alloys Compd. 509, 6096–6101 (2011)

    Article  CAS  Google Scholar 

  45. M. Dalal, J. Dalal, S. Chahar, H. Dahiya, S. Devi, P. Dhankhar, S. Kumar, V.B. Taxak, D. Kumar, S.P. Khatkar, J. Alloys Compd. 805, 84–96 (2019)

    Article  CAS  Google Scholar 

  46. Q. Sun, B. Li, S. Wang, H. Guo, X. Huang, J. Mater. Sci.: Mater. Electron. 29, 12972–12977 (2018)

    CAS  Google Scholar 

  47. M.H.V. Werts, R.T.F. Jukes, J.W. Verhoeven, Phys. Chem. Chem. Phys. 4, 1542–1548 (2002)

    Article  CAS  Google Scholar 

  48. A. Hooda, S.P. Khatkar, A. Khatkar, S. Chahar, S. Devi, J. Dalal, V.B. Taxak, Curr. Appl. Phys. 19, 621–628 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The author (Ms. Jyoti Dalal) acknowledges the “Council of Scientific and Industrial Research” (CSIR), New Delhi, India for providing the economic support to the present work in the form of senior research fellowship (SRF, Award No: 09/382(0180)/2016-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Khatkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalal, J., Khatkar, A., Dalal, M. et al. Characteristics of down conversion green emitting Ba3Bi2(PO4)4:Tb3+ nanosized particles for advanced illuminating devices. J Mater Sci: Mater Electron 31, 1216–1226 (2020). https://doi.org/10.1007/s10854-019-02633-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02633-x

Navigation