Skip to main content
Log in

Electron–hole pair creation energy in amorphous selenium: geminate versus columnar recombination

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Amorphous selenium (a-Se) is one of the most successful photoconductors for direct-conversion X-ray detectors. However, the initial carrier recombination is believed to be responsible for high electron–hole pair (EHP) creation energy in a-Se. The simultaneously generated electron and its hole twin can recombine (geminate recombination) or the non-geminate electrons and holes in the columnar track of the primary photoelectron can also recombine (columnar recombination). The question of which mechanism (geminate or columnar) dominates in X-ray irradiation has not been resolved. In this paper, we examine these two recombination mechanisms and analyze them by fitting with published experimental data. The analysis and results are consistent with the columnar recombination mechanism at X-ray irradiation. We also propose an empirical expression for the electric field and photon energy-dependent EHP creation energy in a-Se at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.O. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K.S. Karim, J.A. Rowlands, Sensors 11, 5112 (2011)

    Article  CAS  Google Scholar 

  2. I. Saito, W. Miyazaki, M. Onishi, Y. Kudo, T. Masuzawa, T. Yamada, A. Koh, D. Chua, K. Soga, M. Overend, M. Aono, G.A.J. Amaratunga, K. Okano, Appl. Phys. Lett. 98, 152102 (2011)

    Article  Google Scholar 

  3. S.M. Arnab, M.Z. Kabir, I.E.E.E. Trans, Rad. Plasma Med. Sci. 1, 221–228 (2017)

    Google Scholar 

  4. S.A. Mahmood, M.Z. Kabir, O. Tousignant, J. Greenspan, IEEE Trans. Nucl. Sci. 59, 597 (2012)

    Article  Google Scholar 

  5. B. Zhao, W. Zhao, Med. Phys. 35, 1978 (2008)

    Article  Google Scholar 

  6. C.A. Klein, J. Appl. Phys. 39, 2029 (1968)

    Article  CAS  Google Scholar 

  7. W. Que, J.A. Rowlands, Phys. Rev. B 51, 10500 (1995)

    Article  CAS  Google Scholar 

  8. I.M. Blevis, D.C. Hunt, J.A. Rowlands, J. Appl. Phys. 85, 7958 (1999)

    Article  CAS  Google Scholar 

  9. C. Haugen, S.O. Kasap, J.A. Rowlands, J. Phys. D 32, 200 (1999)

    Article  CAS  Google Scholar 

  10. D. Mah, J.A. Rowlands, J.A. Rawlinson, Med. Phys. 25, 444 (1998)

    Article  CAS  Google Scholar 

  11. M. Pope, C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd edn. (Oxford University Press, New York, 1999)

    Google Scholar 

  12. L. Onsager, Phys. Rev. 54, 554 (1938)

    Article  CAS  Google Scholar 

  13. D.M. Pai, R.C. Enck, Phys. Rev. B 11(12), 5163 (1975)

    Article  CAS  Google Scholar 

  14. E. Fourkal, M. Lachaine, B.G. Fallone, Phys. Rev. B 63, 195204 (2001)

    Article  Google Scholar 

  15. O. Bubon, K. Jandieri, S.D. Baranovskii, S.O. Kasap, A. Reznik, J. Appl. Phys. 119, 124511 (2016)

    Article  Google Scholar 

  16. G. Jaffe, Ann. Phys. Leipzig (series no 24) 42, 303 (1913)

    Article  Google Scholar 

  17. N. Hijazi, M.Z. Kabir, J. Mater. Sci.: Mater. Electron. 28, 7036 (2017)

    CAS  Google Scholar 

  18. N. Hijazi, D. Panneerselvam, M.Z. Kabir, J. Mater. Sci.: Mater. Electron. 29, 486 (2018)

    CAS  Google Scholar 

  19. C. Haugen, S.O. Kasap, Philos. Mag. 71, 91 (1995)

    Article  CAS  Google Scholar 

  20. M. Pope, C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd edn. (Oxford University Press, New York, 1999), p. 502

    Google Scholar 

  21. O. Bubon, G. DeCrescenzo, J.A. Rowlands, A. Reznik, J. Non-Cryst, Solids 358, 2431 (2012)

    CAS  Google Scholar 

  22. G. Juska, K. Arlauskas, Phys. Status Solidi A 59, 389 (1980)

    Article  CAS  Google Scholar 

  23. M.F. Stone, W. Zhao, B.V. Jacak, P. O’Conner, B. Yu, P. Rehak, Med. Phys. 29, 319 (2002)

    Article  CAS  Google Scholar 

  24. S.O. Kasap, J. Phys. D 33, 2853 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support from NSERC through its Discovery Grant program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Kabir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir, M.Z., Arnab, S.M. & Hijazi, N. Electron–hole pair creation energy in amorphous selenium: geminate versus columnar recombination. J Mater Sci: Mater Electron 30, 21059–21063 (2019). https://doi.org/10.1007/s10854-019-02475-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02475-7

Navigation