Skip to main content
Log in

Synthesis of La0.5Ca0.5−xxMnO3 nanocrystalline manganites by sucrose assisted auto combustion route and study of their structural, magnetic and magnetocaloric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Perovskite manganite La0.5Ca0.5−xxMnO3 (LCMO) nanomaterials were elaborated using the sucrose modified auto combustion method. Rietveld refinements of the X-ray diffraction patterns of the crystalline structure confirm a single-phase orthorhombic state with Pbnm space group (No. 62). The Ca-vacancies were voluntarily created in the LCMO structure in order to study their influence on the magnetic behaviour in the system. The magnetic susceptibility was found to be highly enhanced in the sample with Ca-vacancies. Paramagnetic-to-ferromagnetic phase transition was evidenced in both samples around 254 K. This transition is, characterized by a drastic jump of the susceptibility in the sample with Ca-vacancies. The maximum of entropy change, observed for both compounds at magnetic field of 6 T was 2.30 J kg−1 K−1 and 2.70 J kg−1 K−1 for the parent compound and the lacunar one respectively. The magnetocaloric adiabatic temperature change value calculated by indirect method was 5.6 K and 5.2 K for the non-lacunar and Ca-vacancy compound, respectively. The Ca-lacunar La0.5Ca0.5−xxMnO3 (x = 0.05) reported in this work demonstrated overall enhancement of the magnetocaloric effect over the LCMO. The technique used to elaborate LCMO materials was beneficial to enhance the magnetocaloric effect and magnetic behaviour. Therefore, we conclude that this less costly environmentally friendly system can be considered as more advantageous candidate for magnetic refrigeration applications then the commonly Gd-based compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. V. Franco, J.S. Blázquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramírez, A. Conde, Magnetocaloric effect: from materials research to refrigeration devices. Prog. Mater Sci. 93, 112–232 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.005

    Article  Google Scholar 

  2. M.A. Benedict, S.A. Sherif, M. Schroeder, D.G. Beers, The impact of magnetocaloric properties on refrigeration performance and machine design. Int. J. Refrig 74, 576–583 (2017). https://doi.org/10.1016/j.ijrefrig.2016.12.004

    Article  Google Scholar 

  3. D.J. Silva, B.D. Bordalo, J. Puga, A.M. Pereira, J. Ventura, J.C.R.E. Oliveira, J.P. Araújo, Optimization of the physical properties of magnetocaloric materials for solid state magnetic refrigeration. Appl. Therm. Eng. 99, 514–517 (2016). https://doi.org/10.1016/j.applthermaleng.2016.01.026

    Article  Google Scholar 

  4. J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993). https://doi.org/10.1016/0921-4526(93)90108-I

    Article  Google Scholar 

  5. J. Yang, W.H. Song, Y.Q. Ma, R.L. Zhang, Y.P. Sun, Determination of oxygen stoichiometry in the mixed-valent manganites. J. Magn. Magn. Mater. 285, 417–421 (2005). https://doi.org/10.1016/j.jmmm.2004.08.012

    Article  CAS  Google Scholar 

  6. J.M. González-Calbet, E. Herrero, N. Rangavittal, J.M. Alonso, J.L. Martínez, M. Vallet-Regí, Ordering of Oxygen Vacancies and Magnetic Properties in La0.5Ca0.5MnO3 − δ (0 ≤ δ≤0.5). J. Solid State Chem. 148, 158–168 (1999). https://doi.org/10.1006/jssc.1999.8441

    Article  CAS  Google Scholar 

  7. I. Walha, H. Ehrenberg, H. Fuess, A. Cheikhrouhou, Structure and magnetic properties of lanthanum and calcium-deficient La0.5Ca0.5MnO3 manganites. J. Alloys Compd. 433, 63–67 (2007). https://doi.org/10.1016/j.jallcom.2006.06.095

    Article  CAS  Google Scholar 

  8. M. Ghahremani, A. Aslani, M. Hosseinnia, L.H. Bennett, E. Della Torre, Direct and indirect measurement of the magnetocaloric effect in bulk and nanostructured Ni-Mn-In Heusler alloy. AIP Adv. 8, 056426 (2018)

    Article  Google Scholar 

  9. A.O. Pecharsky, K.A. Gschneidner, V.K. Pecharsky, The giant magnetocaloric effect of optimally prepared Gd5Si2Ge2. J. Appl. Phys. 93, 4722–4728 (2003). https://doi.org/10.1063/1.1558210

    Article  CAS  Google Scholar 

  10. V.K. Pecharsky, K.A. Gschneidner, A.O. Pecharsky, A.M. Tishin, Thermodynamics of the magnetocaloric effect. Phys. Rev. B. 64, 144406 (2001). https://doi.org/10.1103/PhysRevB.64.144406

    Article  CAS  Google Scholar 

  11. V.K. Pecharsky, K.A. Gschneidner Jr., Magnetocaloric effect and magnetic refrigeration. J. Magn. Magn. Mater. 200, 44–56 (1999). https://doi.org/10.1016/S0304-8853(99)00397-2

    Article  CAS  Google Scholar 

  12. K. Das, N. Banu, I. Das, B.N. Dev, Significantly large magnetocaloric effect in polycrystalline La0.83Sr0.17MnO3 near room temperature. Physica B 545, 438–441 (2018). https://doi.org/10.1016/j.physb.2018.06.029

    Article  CAS  Google Scholar 

  13. S.C. Das, K. Mandal, P. Dutta, S. Pramanick, S. Chatterjee, Observation of room temperature magnetocaloric effect in Mn0.9Ni1.1Ge alloy. J. Magn. Magn. Mater. 465, 44–47 (2018). https://doi.org/10.1016/j.jmmm.2018.05.077

    Article  CAS  Google Scholar 

  14. M. Baldini, T. Muramatsu, M. Sherafati, H. Mao, L. Malavasi, P. Postorino, S. Satpathy, V.V. Struzhkin, Origin of colossal magnetoresistance in LaMnO3 manganite. Proc. Natl. Acad. Sci. USA 112, 10869–10872 (2015). https://doi.org/10.1073/pnas.1424866112

    Article  CAS  Google Scholar 

  15. P. Rivero, V. Meunier, W. Shelton, Electronic, structural, and magnetic properties of LaMnO3 phase transition at high temperature. Phys. Rev. B. (2016). https://doi.org/10.1103/physrevb.93.024111

    Article  Google Scholar 

  16. J. Makni-Chakroun, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Impact of a small amount of vacancy in both lanthanum and calcium on the physical properties of nanocrystalline La0.7Ca0.3MnO3 manganite. J. Alloys Compd. 650, 421–429 (2015). https://doi.org/10.1016/j.jallcom.2015.07.052

    Article  CAS  Google Scholar 

  17. A. Ezaami, I. Sfifir, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Critical properties in La0.7Ca0.2Sr0.1MnO3 manganite: a comparison between sol-gel and solid state process. J. Alloys Compd. 693, 658–666 (2017). https://doi.org/10.1016/j.jallcom.2016.09.223

    Article  CAS  Google Scholar 

  18. A. Jerbi, A. Krichene, R. Thaljaoui, W. Boujelben, Structural, magnetic, and electrical study of polycrystalline Pr0.55Sr0.45 − x Na x MnO3 (x = 0.05 and 0.1). J. Supercond. Novel Magn. 29, 123–132 (2016). https://doi.org/10.1007/s10948-015-3217-0

    Article  CAS  Google Scholar 

  19. A. Gómez, E. Chavarriaga, I. Supelano, C.A. Parra, O. Morán, Tuning the magnetocaloric properties of La0.7Ca0.3MnO3 manganites through Ni-doping. Phys. Lett. A. 382, 911–919 (2018). https://doi.org/10.1016/j.physleta.2018.01.030

    Article  CAS  Google Scholar 

  20. Y. Tomioka, T. Okuda, Y. Okimoto, A. Asamitsu, H. Kuwahara, Y. Tokura, Charge/orbital ordering in perovskite manganites. J. Alloy. Compd. 326, 27–35 (2001). https://doi.org/10.1016/S0925-8388(01)01222-1

    Article  CAS  Google Scholar 

  21. Z.-J. Yao, W.-Q. Chen, J.-H. Gao, H.-M. Jiang, F.-C. Zhang, Theory for charge and orbital density-wave states in manganite La0.5Sr1.5MnO4. Phys. Rev. B. (2013). https://doi.org/10.1103/physrevb.87.155103

    Article  Google Scholar 

  22. L. Yu-Kuai, Y. Yue-Wei, L. Xiao-Guang, Colossal magnetoresistance in manganites and related prototype devices. Chin. Phys. B. 22, 087502 (2013). https://doi.org/10.1088/1674-1056/22/8/087502

    Article  CAS  Google Scholar 

  23. H.A. Jahn, E. Teller, Stability of polyatomic molecules in degenerate electronic states: I—orbital degeneracy. Proc. R. Soc. Lond. A. 161, 220–235 (1937). https://doi.org/10.1098/rspa.1937.0142

    Article  CAS  Google Scholar 

  24. V.M. Andrade, R.J.C. Vivas, S.S. Pedro, J.C.G. Tedesco, A.L. Rossi, A.A. Coelho, D.L. Rocco, M.S. Reis, Magnetic and magnetocaloric properties of La0.6Ca0.4MnO3 tunable by particle size and dimensionality. Acta Mater. 102, 49–55 (2016). https://doi.org/10.1016/j.actamat.2015.08.080

    Article  CAS  Google Scholar 

  25. Y. Regaieg, M. Koubaa, W.C. Koubaa, A. Cheikhrouhou, L. Sicard, S. Ammar-Merah, F. Herbst, Structure and magnetocaloric properties of La0.8Ag0.2 − xKxMnO3 perovskite manganites. Mater. Chem. Phys. 132, 839–845 (2012). https://doi.org/10.1016/j.matchemphys.2011.12.021

    Article  CAS  Google Scholar 

  26. M. Pękała, V. Drozd, Magnetocaloric effect in nano- and polycrystalline. J. Non-Crystalline Solids. 354, 5308–5314 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.06.112

    Article  CAS  Google Scholar 

  27. A. Krichene, W. Boujelben, A. Cheikhrouhou, Structural, magnetic and magnetocaloric properties in La0.5 − xRexCa0.5MnO3 manganites (x = 0; 0.1 and Re = Gd, Eu and Dy). J. Alloys Compd. 550, 75–82 (2013). https://doi.org/10.1016/j.jallcom.2012.09.036

    Article  CAS  Google Scholar 

  28. H. Gencer, N.E. Cengiz, V.S. Kolat, T. Izgi, S. Atalay, Production of LaCaMnO3 composite by ball milling. Acta Phys. Pol. A 125, 214–216 (2014). https://doi.org/10.12693/APhysPolA.125.214

    Article  Google Scholar 

  29. J.Q. Li, W.A. Sun, W.Q. Ao, J.N. Tang, Hydrothermal synthesis and Magnetocaloric effect of La0.5Ca0.3Sr0.2MnO3. J. Magn. Magn. Mater. 302, 463–466 (2006). https://doi.org/10.1016/j.jmmm.2005.10.007

    Article  CAS  Google Scholar 

  30. A. Arabi, M. Fazli, M.H. Ehsani, Tuning the morphology and photocatalytic activity of La0.7Ca0.3MnO3 nanorods via different mineralizer-assisted hydrothermal syntheses. Mater. Res. Bull. 90, 205–211 (2017). https://doi.org/10.1016/j.materresbull.2017.02.043

    Article  CAS  Google Scholar 

  31. A. Mrakovic, J. Blanusă, D. Primc, M. Perovic, Z. Jagličic, V. Kusigerski, V. Spasojevic, Modified self-propagating high-temperature synthesis of nanosized La0.7Ca0.3MnO3. Ceram. Int. (2012). https://doi.org/10.1016/j.ceramint.2012.10.216

    Article  Google Scholar 

  32. D. Berger, C. Matei, F. Papa, D. Macovei, V. Fruth, J.P. Deloume, Pure and doped lanthanum manganites obtained by combustion method. J. Eur. Ceram. Soc. 27, 4395–4398 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.02.164

    Article  CAS  Google Scholar 

  33. K.P. Shinde, N.D. Thorat, S.S. Pawar, S.H. Pawar, Combustion synthesis and characterization of perovskite La0.9Sr0.1MnO3. Mater. Chem. Phys. 134, 881–885 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.085

    Article  CAS  Google Scholar 

  34. S. Ben Moumen, Y. Gagou, S. Belkhadir, D. Mezzane, M. Amjoud, B. Rozic, L. Hajji, Z. Kutnjak, Z. Jaglicic, M. Jagodic, M. El Marssi, Y. Kopelevich, I.A. Luk’yanchuk, Structural, dielectric and magnetic properties of multiferroic (1-x) La0.5Ca0.5MnO3-(x) BaTi0.8Sn0.2O3 laminated composites. IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2019). https://doi.org/10.1109/tuffc.2019.2935459

    Article  Google Scholar 

  35. M. Smari, I. Walha, E. Dhahri, E.K. Hlil, Structural, magnetic and magnetocaloric properties of Ag-doped La0.5Ca0.5 − Ag MnO3 compounds with 0 ≤x≤ 0.4. J. Alloys Compd. 579, 564–571 (2013). https://doi.org/10.1016/j.jallcom.2013.07.104

    Article  CAS  Google Scholar 

  36. A. Elghoul, A. Krichene, N. Chniba Boudjada, W. Boujelben, Rare earth effect on structural, magnetic and magnetocaloric properties of La0.75Ln0.05Sr0.2MnO3 manganites. Ceram. Int. 44, 12723–12730 (2018). https://doi.org/10.1016/j.ceramint.2018.04.075

    Article  CAS  Google Scholar 

  37. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  38. S. Chaffai, W. Boujelben, M. Ellouze, A. Cheikh-rouhou, J.C. Joubert, A comparative study of the physical properties of Pr0.5 − x□xSr0.5MnO3 and Pr0.5Sr0.5 − x□xMnO3 manganites. Physica B 321, 74–78 (2002). https://doi.org/10.1016/s0921-4526(02)00825-6

    Article  CAS  Google Scholar 

  39. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  40. M. Khlifi, M. Bejar, O. EL Sadek, E. Dhahri, M.A. Ahmed, E.K. Hlil, Structural, magnetic and magnetocaloric properties of the lanthanum deficient in La0.8Ca0.2 − x□xMnO3 (x = 0–0.20) manganites oxides. J. Alloys Compd. 509, 7410–7415 (2011). https://doi.org/10.1016/j.jallcom.2011.04.049

    Article  CAS  Google Scholar 

  41. W. Boujelben, A. Cheikh-Rouhou, J. Pierre, J.C. Joubert, Ferromagnetism in the lacunar (Pr, Sr)MnO3 perovskite manganites. Physica B 321, 37–44 (2002). https://doi.org/10.1016/S0921-4526(02)00818-9

    Article  CAS  Google Scholar 

  42. C. Kittel, Introduction to solid state physics, 6th edn. (Wiley, New York, 1986)

    Google Scholar 

  43. N. Abdelmoula, A. Cheikh-Rouhou, L. Reversat, Structural, magnetic and magnetoresistive properties of La0.7Sr0.3-xNaxMnO3 manganites. J. Phys. Condens. Matter. 13, 449 (2001). https://doi.org/10.1088/0953-8984/13/3/307

    Article  CAS  Google Scholar 

  44. Y.A. Izyumov, Y.N. Skryabin, Double exchange model and the unique properties of the manganites. Phys. Usp. 44, 109 (2001). https://doi.org/10.1070/PU2001v044n02ABEH000840

    Article  CAS  Google Scholar 

  45. C. Zener, Interaction between the $d$-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951). https://doi.org/10.1103/physrev.82.403

    Article  CAS  Google Scholar 

  46. W. Tang, W. Lu, X. Luo, B. Wang, X. Zhu, W. Song, Z. Yang, Y. Sun, Particle size effects on La0.7Ca0.3MnO3: size-induced changes of magnetic phase transition order and magnetocaloric study. J. Magn. Magn. Mater. 322, 2360–2368 (2010). https://doi.org/10.1016/j.jmmm.2010.02.038

    Article  CAS  Google Scholar 

  47. P. Levy, F. Parisi, G. Polla, D. Vega, G. Leyva, H. Lanza, R.S. Freitas, L. Ghivelder, Controlled phase separation in La0.5Ca0.5MnO3. Phys. Rev. B. 62, 6437–6441 (2000). https://doi.org/10.1103/physrevb.62.6437

    Article  CAS  Google Scholar 

  48. I. Walha, H. Ehrenberg, H. Fuess, A. Cheikhrouhou, Structural and magnetic properties of La0.6 − x□xCa0.4MnO3 (0 ≤ x ≤ 0.2) perovskite manganite. J. Alloys Compd. 485, 64–68 (2009). https://doi.org/10.1016/j.jallcom.2009.06.121

    Article  CAS  Google Scholar 

  49. M. Mansouri, H. Omrani, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Madouri, A. Cheikhrouhou, Effect of vanadium doping on structural, magnetic and magnetocaloric properties of La0.5Ca0.5MnO3. J. Magn. Magn. Mater. 401, 593–599 (2016). https://doi.org/10.1016/j.jmmm.2015.10.066

    Article  CAS  Google Scholar 

  50. M. Khlifi, E. Dhahri, E.K. Hlil, Magnetic, magnetocaloric, magnetotransport and magnetoresistance properties of calcium deficient manganites La0.8Ca0.2 − x□xMnO3 post-annealed at 800 °C. J. Alloys Compd. 587, 771–777 (2014). https://doi.org/10.1016/j.jallcom.2013.11.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the European H2020-MSCA-RISE-2017-ENGIMA action and the CNRST Priority Program PPR 15/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Gagou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Moumen, S., Gagou, Y., Chettab, M. et al. Synthesis of La0.5Ca0.5−xxMnO3 nanocrystalline manganites by sucrose assisted auto combustion route and study of their structural, magnetic and magnetocaloric properties. J Mater Sci: Mater Electron 30, 20459–20470 (2019). https://doi.org/10.1007/s10854-019-02392-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02392-9

Navigation