Skip to main content
Log in

EPR and optical studies of pure MgFe2O4 and ZnO nanoparticles and MgFe2O4–ZnO nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A comprehensive EPR and optical studies of pure MgFe2O4 and ZnO nanoparticles and MgFe2O4–ZnO nanocomposite have been done in order to explore its future possibilities of applications. Pure MgFe2O4 and ZnO nanoparticles have been synthesized using Sol–Gel method. MgFe2O4–ZnO nanocomposite has been prepared using water dispersed pure MgFe2O4 nano seeds (previously synthesized) by ultrasonication. Effect of introducing zinc oxide in pure MgFe2O4 nanomatrix on structural properties was investigated using X-ray diffraction and transmission electron microscopy techniques. They confirm the cubic spinel structure of both pure and ZnO imbedded MgFe2O4 samples. UV–Visible and photoluminescence spectra show that the band gap of composite is tuned and more useful for photocatalytic applications. FTIR spectra indicate the presence of absorption bands in the range 390–561 cm−1, which is a common feature of spinel ferrite. The energy dispersive spectroscopy analysis confirms the composition of specimen. Further, the investigation of electronic and magnetic properties of the powdered samples is done using electron paramagnetic resonance spectroscopy. Change in g value, peak-to-peak line width (Hpp), resonance field (Hr) and spin–spin relaxation time (T2) give useful information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Barrera, P. Tiberto, P. Allia, B. Bonelli, S. Esposito, A. Marocco, M. Pansini, Y. Leterrier, Review: magnetic properties of nanocomposites. Appl. Sci. 9, 212 (2019)

    Article  Google Scholar 

  2. M. Rostami, M.H.M. Ara, The dielectric, magnetic and microwave absorption properties of Cu-substituted Mg-Ni spinel ferrite-MWCNT nanocomposites. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.01.056

    Google Scholar 

  3. A.K. Zak, A.M. Hashim, M. Darroudi, Optical properties of ZnO/BaCO3 nanocomposites in UV and visible regions nanoscale. Res. Lett. 9, 399 (2014)

    Google Scholar 

  4. A.M. Mohammad, S.M.A. Ridha, T.H. Mubarak, Dielectric properties of Cr-substituted cobalt ferrite nanoparticles synthesis by citrate-gel auto combustion method. Int. J. Appl. Eng. Res. 13(8), 6026–6035 (2018)

    Google Scholar 

  5. L. Zheng, K. Fang, M. Zhang, Z. Nan, L. Zhao, D. Zhou, M. Zhub, W. Li, Tuning of spinel magnesium ferrite nanoparticles with enhanced magnetic properties. RSC Adv. 8, 39177–39181 (2018)

    Article  Google Scholar 

  6. M. Amiri, M.S. Niasari, A. Akbari, Magnetic nanocarriers: evolution of spinel ferrites for medical applications. Adv. Colloid Interface Sci. 265, 29–44 (2019)

    Article  Google Scholar 

  7. P. Tiwari, R. Verma, S.N. Kane, T. Tatarchuk, F. Mazaleyrat, Effect of Zn addition on structural, magnetic properties and anti-structural modeling of magnesium-nickel nano ferrites. Mater. Chem. Phys. 229, 78–86 (2019)

    Article  Google Scholar 

  8. D.K. Mahato, Ac conductivity analysis of nanocrystallite MgFe2O4 ferrite. Mater. Today 5(3), 9191–9195 (2018)

    Google Scholar 

  9. N. Sivakumar, A. Narayanasamya, J.-M. Greneche, R. Murugaraj, Y.S. Lee, Electrical and magnetic behaviour of nanostructured MgFe2O4 spinel ferrite. J. Alloy. Compd. 504, 395–402 (2010)

    Article  Google Scholar 

  10. R.P. Singha, C. Venkataraju, Effect of calcinations on the structural and magnetic properties of magnesium ferrite nanoparticles prepared by sol gel method. Chin. J. Phys. 56, 2218–2225 (2018)

    Article  Google Scholar 

  11. J. Balavijayalakshmi, Greeshma, Synthesis and characterization of magnesium ferrite nanoparticles by co-precipitation method. J. Environ. Nanotechnol. 2(2), 53–55 (2013)

    Article  Google Scholar 

  12. S.I. Hussein, A.S. Elkady, M.M. Rashad, A.G. Mostafa, R.M. Megahid, Structural and magnetic properties of magnesium ferrite nanoparticles prepared via EDTA-based sol–gel reaction. J. Magn. Magn. Mater. 379, 9–15 (2015)

    Article  Google Scholar 

  13. N.R. Su, P. Lv, M. Li, X. Zhang, M. Li, J. Niu, Fabrication of MgFe2O4–ZnO heterojunction photocatalysts for application of organic pollutants. Mater. Lett. 122, 201–204 (2014)

    Article  Google Scholar 

  14. S. Maensiri, M. Sangmanee, A. Wiengmoon, Magnesium ferrite (MgFe2O4) nanostructures fabricated by electrospinning nanoscale. Res. Lett. 4, 221–228 (2009)

    Google Scholar 

  15. S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int. Nano Lett. 3, 30 (2013)

    Article  Google Scholar 

  16. J. Jiang, J. Pi, J. Cai, Review: the advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl. (2018). https://doi.org/10.1155/2018/1062562

    Google Scholar 

  17. J.N. Hasnidawani, H.N. Azlina, H. Norita, N.N. Bonnia, S. Ratim, E.S. Ali, Synthesis of ZnO nanostructures using sol-gel method. Procedia Chem. 19, 211–216 (2016)

    Article  Google Scholar 

  18. A. Janotti, Walle C.G. Vde, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009)

    Article  Google Scholar 

  19. M. Arakha, J. Roy, P.S. Nayak, B. Mallick, S. Jha, Free radical biology and medicine. Free Radic. Biol. Med. 110, 42–53 (2017)

    Article  Google Scholar 

  20. M.K. Debanath, S. Karmakar, Study of blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method. Mater. Lett. 111, 116–119 (2013)

    Article  Google Scholar 

  21. M.D. Tyona, R.U. Osuji, P.U. Asogwa, S.B. Jambure, F.I. Ezema, Structural modification and band gap tailoring of zinc oxide thin films using copper impurities. J. Solid State Electrochem. (2017). https://doi.org/10.1007/s10008-017-3533-3

    Google Scholar 

  22. N. Hana, Y. Tiana, X. Wua, Y. Chen, Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO. Sens. Actuators B 138, 228–235 (2009)

    Article  Google Scholar 

  23. A. Al-Kahlout, ZnO nanoparticles and porous coatings for dye-sensitized solar cell application: photoelectrochemical characterization. Thin Solid Films 520, 1814–1820 (2012)

    Article  Google Scholar 

  24. H.H. Yun, J.S. Kim, E.H. Kim, S.K. Lee, J.W. Kim, H.J. Lim, S.M. Koo, Enhanced photocatalytic activity of TiO2@mercaptofunctionalized silica toward colored organic dyes. J. Mater. Sci. 50, 2577–2586 (2015)

    Article  Google Scholar 

  25. G. Nabiyouni, D. Ghanbari, J. Ghasemi, A. Yousofnejad, Microwave-assisted synthesis of MgFe2O4-ZnO nanocomposite and its photocatalyst investigation in methyl orange degradation. J. Nano Struct. 5(3), 289–295 (2015)

    Google Scholar 

  26. A. Loganathan, K. Kumar, Effects on structural, optical, and magnetic properties of pure and Sr-substituted MgFe2O4 nanoparticles at different calcinations temperatures. Appl. Nanosci. 6, 629–639 (2016)

    Article  Google Scholar 

  27. S. Mallesh, D. Prabu, V. Srinivas, Thermal stability and magnetic properties of MgFe2O4@ZnO nanoparticles. AIP Adv. 7, 056103 (2017)

    Article  Google Scholar 

  28. A.I. Ahmed, A.M.A. Siddig, A.A. Mirghni, M.I. Omer, a Abdelrahman, A.A. Elbadawi, Structural and optical properties of Mg1-xZnxFe2O4 nano-ferrites synthesized using co-precipitation method. Adv. Nanopart. 4, 45–52 (2015)

    Article  Google Scholar 

  29. F.A. Ahmed, L.N. Singh, Effect of Ni substitution on structural and magnetic properties of Mn-Zn ferrite nanoparticles. J. Mater. Sci. Surf. Eng. 6(4), 825–830 (2018)

    Google Scholar 

  30. S.K. Sharma, R. Kumar, V.V.S. Kumar, S.N. Dolia, Size dependent magnetic behaviour of nanocrystalline spinel ferrite Mg0.95Mn0.05Fe2O4. Indian J. Pure Appl. Phys. 45, 16–20 (2007)

    Google Scholar 

  31. B. Issa, I.M. Obaidat, B.A. Albiss, Y. Haik, Magnetic nanoparticles: surface effects and properties related to biomedicine application. Int. J. Mol. Sci. 14, 21266–21305 (2013)

    Article  Google Scholar 

  32. A.-M. AlTurki, Superparamagnetic MnFe2O4 and MnFe2O4 NPs/ABS nanocomposite: preparation, thermal stability and exchange bias effect. Indian J. Sci. Technol. (2018). https://doi.org/10.17485/ijst/2018/v11i19/122884

    Google Scholar 

  33. A. Franco Jr., H.V.S. Pessoni, F.O. Neto, Enhanced high temperature magnetic properties of ZnO _ CoFe2O4 ceramic composite. J. Alloys Compd. 680, 198–205 (2016)

    Article  Google Scholar 

  34. T.J. Castro, S.W. daSilva, F. Nakagomi, N.S. Moura, A. Franco Jr., P.C. Morais, Structural and magnetic properties of ZnO–CoFe2O4 nanocomposites. J. Magn. Magn. Mater. 389, 27–33 (2015)

    Article  Google Scholar 

  35. A.K. Gupta, R. Kripal, EPR and photoluminescence properties of Mn2+ doped CdS nanoparticles synthesized via co-precipitation method. Spectrochim. Acta A 96, 626–631 (2012)

    Article  Google Scholar 

  36. A.K. Verma, D. Singh, S. Singh, R.R. Yadav, Surfactant-free synthesis and experimental analysis of Mn-doped ZnO–glycerol nanofluids: an ultrasonic and thermal study. Appl. Phys. A 125, 253 (2019)

    Article  Google Scholar 

  37. W.R. Agami, Effect of neodymium substitution on the electric and dielectric properties of Mn-Ni-Zn ferrite. Physica B (2018). https://doi.org/10.1016/j.physb.2018.01.021

    Google Scholar 

  38. D. Guan, J. Li, X. Gao, C. Yuan, Effects of amorphous and crystalline MoO3 coatings on the Li-ion insertion behavior of a TiO2 nanotube anode for lithium ion batteries. RSC Adv. 4, 4055 (2014)

    Article  Google Scholar 

  39. M.A. Johar, R.A. Afzal, A.A. Alazba, U. Manzoor, Review article photocatalysis and bandgap engineering using ZnO nanocomposites. Adv. Mater. Sci. Eng. (2015). https://doi.org/10.1155/2015/934587

    Google Scholar 

  40. B.D. Cardoso et al., Magnetoliposomes containing magnesium ferrite nanoparticles as nanocarriers for the model drug curcumin. R. Soc. Open Sci. 5, 181017 (2018)

    Article  Google Scholar 

  41. Y. Wang, H. Yana, Q. Zhang, Enhanced visible light irradiation photocatalytic performance of MgFe2O4 after growing with ZnO nanoshell and silver nanoparticles. J. Chin. Chem. Soc. (2017). https://doi.org/10.1002/jccs.201700110)

    Google Scholar 

  42. H.M. El-Sayed, W.R. Agami, Controlling of optical energy gap of Co-ferrite quantum dots in poly (methyl methacrylate) matrix. Superlattices Microstruct. (2015). https://doi.org/10.1016/j.spmi.2015.04.013

    Google Scholar 

  43. M.E. Sadat et al., Photoluminescence and photothermal effect of Fe3O4 nanoparticles for medical imaging and therapy. Appl. Phys. Lett. 105, 091903 (2014)

    Article  Google Scholar 

  44. W.R. Agami, M.A. Ashmawy, A.A. Sattar, Structural, IR, and magnetic studies of annealed Li-ferrite nanoparticles. J. Mater. Eng. Perform. (2013). https://doi.org/10.1007/s11665-013-0754-1

    Google Scholar 

  45. M.G. Naseri, M.H.M. Ara, E.B. Saion, A.H. Shaari, Superparamagnetic magnesium ferrite nanoparticles fabricated by a simple, thermal-treatment method. J. Magn. Magn. Mater. 350, 141–147 (2014)

    Article  Google Scholar 

  46. S. Pandey, R. Kripal, EPR, optical absorption and superposition model study of Fe3+ doped strontium nitrate single crystals. J. Magn. Reson. 209, 220–226 (2011)

    Article  Google Scholar 

  47. K.K. Bamzai, G. Kour, B. Kaur, M. Arora, R.P. Pant, Infrared spectroscopic and electron paramagnetic resonance studies on Dy substituted magnesium ferrite. J. Magn. Magn. Mater. 345, 255–260 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Head, SAIF, I. I. T. Mumbai, Powai, Mumbai for providing the facility of EPR spectrometer. One of the authors, Garima Vaish is thankful to the Head, Department of Physics, University of Allahabad, Allahabad for providing departmental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Kripal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaish, G., Kripal, R. & Kumar, L. EPR and optical studies of pure MgFe2O4 and ZnO nanoparticles and MgFe2O4–ZnO nanocomposite. J Mater Sci: Mater Electron 30, 16518–16526 (2019). https://doi.org/10.1007/s10854-019-02028-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02028-y

Navigation