Skip to main content
Log in

rGO/ZnO nanorods/Cu based nanocomposite having flower shaped morphology: AC conductivity and humidity sensing response studies at room temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Humidity control is an important environmental concern in storage, transport, and preservation operations in agriculture, food, medical, and other industrial fields. In the present work, we prepared a nanocomposite having flower shaped morphology that consists of metal (Cu) nanoparticles, a metal oxide (ZnO nanorods), and reduced graphene oxide (rGO) with a one-pot synthesis method for the AC conductivity and Humidity sensing response studies at room temperature. The morphology of the nanocomposite was characterized by using XRD, SEM, EDX, and TEM analysis. Conduction in the nanocomposite due to the hopping mechanism was confirmed by studying the power law behavior of its AC conductivity. The nanocomposite shows a maximum sensing response of 97.79% in the range of 11–97% RH, with response and recovery times of 19 s and 42 s, respectively. The nanocomposite shows a low humidity hysteresis and stable humidity sensing ability. The possible humidity sensing mechanism is discussed in detail. Our results show that the nanocomposite having flower shaped morphology is an ideal candidate for building MEMS/NEMS humidity sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.S. Ismail, M.H. Mamat, N.D. Md Sin, M.F. Malek, A.S. Zoolfakar, A.B. Suriani, A. Mohamed, M.K. Ahmad, M. Rusop, Fabrication of hierarchical sn-doped ZnO nanorod arrays through sonicated sol-gel immersion for rrom temperature, resistive-type humidity sensor applications. Ceram. Int. 42, 9785–9795 (2016)

    Article  Google Scholar 

  2. W.D. Lin, H.M. Chang, R.J. Wu, Applied novel sensing material graphene/polypyrrole for humidity sensor. Sens. Actuators, B 181, 326–331 (2013)

    Article  Google Scholar 

  3. S. Bai, C. Chen, R. Luo, A. Chen, D. Li, Synthesis of MoO3/reduced grapheme oxide hybrids and mechanism of enhancing H2S sensing performances. Sens. Actuators, B 216, 113–120 (2015)

    Article  Google Scholar 

  4. D. Zhang, D. Wang, P. Li, X. Zhou, X. Zong, G. Dong, Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/grapheme oxide nanocomposite film. Sens. Actuators B 225, 1869–1877 (2018)

    Article  Google Scholar 

  5. R. Megha, F.A. Ali, Y.T. Ravikiran, C.H.V.V. Ramana, A.B.V. Kiran Kumar, D.K. Mishra, S.C. Vijaya Kumari, D. Kim, Conducting polymer nanocomposite based temperature sensors: a review. Inorg. Chem. Commun. 98, 11–28 (2018)

    Article  Google Scholar 

  6. A. Kumar, B. Sanjeev, S. Chaudhary, C.H.V.V. Ramana, A.B.V. Kiran Kumar, D. Kim, Ternary nanocomposite for solar light photo catalytic degradation of Methyl orange. Inorg. Chem. Commun. 97, 191–195 (2018)

    Article  Google Scholar 

  7. T. Chandrasekhar, R. Megha, Y.T. RaviKiran, C.H.V.V. Ramana, D.K. Mishra, A.B.V. Kiran Kumar, Alternating current conduction studies of hybrid nanocomposite at room temperature. Int. J. Nano Biomater. 7(2), 71–84 (2017)

    Article  Google Scholar 

  8. S. Kotresh, Y.T. Ravikiran, S.C. Vijaya Kumari, C.H.V.V. Ramana, A.S. Anu, K.M. Batoo, Optimized polyaniline-cadmium ferrite nanocomposite: synthesis, characterisation and alternating current response. Polym. Bull. (2017). https://doi.org/10.1007/s00289-017-2169-x

    Google Scholar 

  9. R. Megha, S. Kotresh, Y.T. Ravikiran, C.H.V.V. Ramana, S.C. Vijaya Kumari, S. Thomas, Study of alternating current conduction mechanism in polypyrrole-magnesium ferrite hybrid nanocomposite through correlated barrier hopping model. Compos. Interfaces 24(1), 55–68 (2017)

    Article  Google Scholar 

  10. S. Kotresh, Y.T. Ravikiran, H.G. RajPrakesh, C.H.V.V. Ramana, S.C. Vijaya Kumari, S. Thomas, Humidity sensing performance of spin coated polyaniline-carboxymethyl cellulose composite at room temperature. Cellulose 23(5), 3177–3186 (2016)

    Article  Google Scholar 

  11. M. Raja, A.B.V. Kiran Kumar, N. Arora, J. Subha, Studies on electrochemical properties of ZnO/rGO nanocomposites as electrode materials for supercapacitors. Fuller. Nanotub. Carbon Nanostruct. 23, 691–694 (2014)

    Article  Google Scholar 

  12. S. Chaudhary, P. Sudharshana Bhashyam, K. Kumar, ABV polyaniline and charcoal binary nanocomposite as an electrode material for supercapacitor applications. (accepted in IEEE Xplore)

  13. C.H.V.V. Ramana, V. Kannan, V.V. Srinivasu, Negative differential resistance device from organic/inorganic hybrid nanocomposites. J. Nanosci. Nanotechnol. 17, 671–675 (2017)

    Article  Google Scholar 

  14. C.H.V.V. Ramana, M.K. Moodley, A.B.V. Kiran Kumar, V. Kannan, Charge carrier transport mechanism based on stable low voltage organic bistable memory device. J. Nanosci. Nanotechnol. 15(5), 3934–3938 (2015)

    Article  Google Scholar 

  15. C.H.V.V. Ramana, M.K. Moodley, V. Kannan, Electrical characteristics of ITO/MEH-PPV/ZnO/Al structure. Nanosci. Nanotechnol. Lett. 6(3), 238–241 (2014)

    Article  Google Scholar 

  16. C.H.V.V. Ramana, M.K. Moodley, K. Kannan, A. Maity, Solution based-spin cast processed organic bistable memory device. Solid State Electron. 81, 45–50 (2013)

    Article  Google Scholar 

  17. C.H.V.V. Ramana, M.K. Moodley, A.B.V. Kiran Kumar, A. Maity, V.V. Srinivasu, Hysteresis type current-voltage characteristics of Indium Tin Oxide/poly-[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylenevinylene] (MEHPPV) + zinc oxide (ZnO)/Al structure: towards memory device. Nanosci. Nanotechnol. Lett. 4(12), 1203–1205 (2012)

    Article  Google Scholar 

  18. C.H.V.V. Ramana, M.K. Moodley, K. Kannan, A. Maity, J. Jayaramudu, W. Clarke, Fabrication of stable low voltage organic bistable memory device. Sens. Actuators B: Chem. 161(1), 684–688 (2012)

    Article  Google Scholar 

  19. D.-T. Phan, I. Park, A.-R. Park, C.M. Park, K.J. Jeon, Black P/graphene hybrid: a fast response humidity sensor with good reversibility and stability. Sci. Rep. 5, 10561 (2017). https://doi.org/10.1038/s41598-017-10848-3

    Article  Google Scholar 

  20. D. Zhang, H. Chang, P. Li, R. Liu, Q. Xue, Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens. Actuators B Chem. 225, 233–240 (2016)

    Article  Google Scholar 

  21. H. Yang, Q. Ye, R. Zeng, J. Zhang, L. Yue, M. Xu, Z.-J. Qiu, D. Wu, Stable and fast-response capacitive humidity sensors based on a ZnO nanopowder/PVP-RGO multilayer. Sensors 17, 2415 (2017). https://doi.org/10.3390/s17102415

    Article  Google Scholar 

  22. S. Chaudhary, L.S. James, A.B.V. Kiran Kumar, C.H.V.V. Ramana, D.K. Mishra, S. Thomas, D. Kim, Reduced graphene oxide/ZnO nanorods nanocomposite: structural, electrical and electrochemical properties. J. Inorg. Organomet. Polym. Mater. (2019). https://doi.org/10.1007/s10904-019-01172-6

    Google Scholar 

  23. S.H. Kim, S.H. Lee, B. Dudem, J.S. Yu, Fabrication and optical characterization of hybrid antireflective structures with zinc oxide nanorods/micro pyramidal silicon for photovoltaic applications. Opt. Mater. Exp. (2016). https://doi.org/10.1364/OME.6.004000

    Google Scholar 

  24. D.H. Kim, B. Dudem, J.S. Yu, High-performance flexible piezoelectric-assisted triboelectric hybrid Nano generator via polydimethylsiloxane-encapsulated Nano flower-like ZnO composite films for scavenging energy from daily human activities. ACS Sustain. Chem. Eng. 6, 8525–8535 (2018)

    Article  Google Scholar 

  25. S. Manjunatha, T. Machappa, A. Sunilkumar, Y.T. Ravikiran, Tungsten disulfide: an efficient material in enhancement of AC conductivity and dielectric properties of polyaniline. J. Mater. Sci.: Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-9255-1

    Google Scholar 

  26. M.V. Fukea, P. Kanitkar, M. Kulkarni, B.B. Kale, R.C. Aiyer, Effect of particle size variation of Ag nanoparticles in Polyaniline composite on humidity sensing. Talanta 81, 320–326 (2010)

    Article  Google Scholar 

  27. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958)

    Article  Google Scholar 

  28. R. Megha, Y.T. Ravikiran, S.C. Vijaya Kumari, H.G. Raj Prakash, S.K. Tiwari, S. Thomas, Enhancement in alternating current conductivity of polypyrrole by multi-walled carbon nanotubes via single electron tunneling. Diam Relat. Mater. 87, 163–171 (2018)

    Article  Google Scholar 

  29. J. Hazarika, A. Kumar, Enhanced AC conductivity and dielectric relaxation properties of polypyrrole nanoparticles irradiated with Ni12+ swift heavy ions. Nucl. Instrum. Methods Phys. Res. B 333, 73–79 (2014)

    Article  Google Scholar 

  30. B. Angadi, P. Victor, V.M. Jali, M.T. Lagare, R. Kumar, S.B. Krupanidhi, AC conductivity studies on the Li irradiated PZT and SBTferroelectric thin films. Mater. Sci. Eng. B 100, 93–101 (2003)

    Article  Google Scholar 

  31. R. Megha, Y.T. Ravikiran, S.C. Vijaya Kumari, H.G. Raj Prakash, C.H.V.V. Ramana, S. Thomas, Enhancement in alternating current conductivity of HCl doped polyaniline by modified titania. Compos. Interfaces (2018). https://doi.org/10.1080/09276440.2018.149935

    Google Scholar 

  32. H. Bakkali, M. Dominguez, X. Batlle, A. Labarta, Universality of the electrical transport in granular metals. Sci. Rep. (2016). https://doi.org/10.1038/srep29676

    Google Scholar 

  33. R. Megha, Y.T. Ravikiran, B. Chethan, H.G. Raj Prakash, S.C. Vijaya Kumari, S. Thomas, Effect of mechanical mixing method of preparation of polyaniline-transition metal oxide composites on DC conductivity and humidity sensing response. J. Mater. Sci.: Mater. Electron. 29, 7253–7261 (2018)

    Google Scholar 

  34. B. Chethan, Y.T. Ravikiran, S.C. Vijaya Kumari, H.G. Raj Prakash, S. Thomas, Nickel substituted cadmium ferrite as room temperature operable humidity sensor. Sens. Actuators A Phys. 280, 466–474 (2018)

    Article  Google Scholar 

  35. L.B. Babu Reddy, R. Megha, B. Chethan, H.G. Raj Prakash, Y.T. Ravikiran, C.H.V.V. Ramana, D. Kim, Role of molybdenum trioxide in enhancing the humidity sensing performance of magnesium ferrite/molybdenum trioxide composite. Inorg. Chem. Commun. 98, 68–74 (2018)

    Article  Google Scholar 

  36. T. Divya, M.P. Nikhila, M. Anju, T.V. Arsha Kusumam, A.K. Akhila, Y.T. Ravikiran, N.K. Renuka, Nanoceria based thin films as efficient humidity sensors. Sens. Actuators A Phys. 261, 85–93 (2017)

    Article  Google Scholar 

  37. G.R. Wang, L. Wang, Q. Rendeng, J. Wang, J. Luo, C.J. Zhong, Correlation between nanostructural parameters and conductivity properties for molecularly-mediated thin film assemblies of gold nanoparticles. J. Mater. Chem. 17, 457–462 (2007)

    Article  Google Scholar 

  38. B. Chethan, H.G. Raj Prakash, Y.T. Ravikiran, S.C. Vijaya Kumari, S. Thomas, Polypyrrole based core-shell structured composite based humidity sensor operable at room temperature. Sens. Actuators B Chem. 296, 126639 (2019)

    Article  Google Scholar 

  39. R. Megha, Y.T. Ravikiran, B. Chethan, H.G. Rajpraksh, S.C. Vijaya Kumari, S. Thomas, Effect of mechanical mixing method of preparation of polyaniline-transition metal oxide composites on DC conductivity and humidity sensing response. J. Mater. Sci.: Mater. Electron. 29(9), 7253–7261 (2018)

    Google Scholar 

  40. D. Zhang, J. Tong, B. Xia, Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens. Actuators B Chem. 197, 66–72 (2014)

    Article  Google Scholar 

  41. N. Agmon, The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995)

    Article  Google Scholar 

  42. D. Burman, R. Ghosh, S. Santra, P.K. Guha, Highly proton conducting MoS2/graphene oxide nanocomposite based chemoresistive humidity sensor. RSC Adv. 6, 57424 (2016)

    Article  Google Scholar 

  43. Z. Wang, Y. Xiao, X. Cui, P. Cheng, B. Wang, Y. Gao, X. Li, T. Yang, T. Zhang, G. Lu, Humidity-sensing properties of urchin like CuO nanostructures modified by reduced graphene oxide. ACS Appl. Mater. Interfaces. 6, 3888–3895 (2014)

    Article  Google Scholar 

  44. V. Jeseentharani, L. Reginamary, B. Jeyaraj, A. Dayalan, K.S. Nagaraja, Nanocrystalline spinelNixCu0.8Zn0.2Fe2O4: a novel material for humidity sensing. J. Mater. Sci. 47, 3529–3534 (2012)

    Article  Google Scholar 

  45. D. Zhang, D. Wang, P. Li, X. Zhou, X. Zong, G. Dong, Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/grapheme oxide nanocomposite film. Sens. Actuators B 225, 1869–1877 (2018)

    Article  Google Scholar 

  46. N. Rezlescu, C. Doroftei, E. Rezlescu, P.D. Popa, Structure and humidity sensitive electrical properties of the Sn4+ and/or Mo6+ substituted Mg ferrite. Sens. Actuators B 115, 589–595 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the UGC-DAE Consortium for Scientific Research Project with Reference Numbers CSR-IC-BL-48/CRS-165/2016-17/829, 2017-18/786, and CSR-IC/BL-48/CRS-165/2018-19/1421. The authors CH.V.V. Ramana and Daewon Kim thank the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2018R1A6A1A03025708).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. B. V. Kiran Kumar or CH. V. V. Ramana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuntal, D., Chaudhary, S., Kiran Kumar, A.B.V. et al. rGO/ZnO nanorods/Cu based nanocomposite having flower shaped morphology: AC conductivity and humidity sensing response studies at room temperature. J Mater Sci: Mater Electron 30, 15544–15552 (2019). https://doi.org/10.1007/s10854-019-01931-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01931-8

Navigation