Skip to main content
Log in

Enhanced thermal stability and dielectric performance of δ-MnO2 by Ni2+ doping

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Despite the wildly studies on MnO2, the poor stability limits its broad use. Here, Ni doping was used to enhance the stability of the MnO2. In this paper, Ni-doped δ-MnO2 was successfully synthesized through a hydrothermal method, and nickel ions exist as divalent Ni2+ in Ni-doped MnO2. Ni doping did not change the crystal phases but promote the growth of MnO2 microspheres and the dielectric loss factor increased by 80% after Ni doping. High temperature stability was investigated, the results showed the existence of Ni doping could block the solid-state diffusion at high temperature so that improve the thermal stability of MnO2, the phase, morphology and dielectric performance could keep consistent with the nonannealing samples. Meantime, first-principles calculation was used to uncover the stabilization mechanism on the microscopic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Liu, V.M.H. Ng, Z. Yao, J. Zhou, Y. Lei, Z. Yang, H. Lv, L.B. Kong, Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl. Mater. Interfaces. 9(19), 16404–16416 (2017)

    Article  Google Scholar 

  2. H. Yu, T. Wang, B. Wen, M. Lu, Z. Xu, C. Zhu, Y. Chen, X. Xue, C. Sun, M. Cao, Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. J. Mater. Chem. 22(40), 21679–21685 (2012)

    Article  Google Scholar 

  3. X. Zhang, J. Guo, P. Guan, G. Qin, S.J. Pennycook, Gigahertz dielectric polarization of substitutional single niobium atoms in defective graphitic layers. Phys. Rev. Lett. 115(14), 147601 (2015)

    Article  Google Scholar 

  4. M. Zhang, J. Zhang, X. Lv, L. Zhang, Y. Wei, S. Liu, Y. Shi, C. Gong, How to exhibit the efficient electromagnetic wave absorbing performance of RGO aerogels: less might be better. J. Mater. Sci. 29(7), 5496–5500 (2018)

    Google Scholar 

  5. H. Guan, Y. Wang, G. Chen, J. Zhu, Frequency and temperature effects on dielectric and electrical characteristics of α-MnO2 nanorods. Powder Technol. 224, 356–359 (2012)

    Article  Google Scholar 

  6. W. Chen, R.B. Rakhi, Q. Wang, M.N. Hedhili, H.N. Alshareef, Morphological and electrochemical cycling effects in MnO2 nanostructures by 3D electron tomography. Adv. Funct. Mater. 24(21), 3130–3143 (2014)

    Article  Google Scholar 

  7. Y. Li, J. Wang, Y. Zhang, M.N. Banis, J. Liu, D. Geng, R. Li, X. Sun, Facile controlled synthesis and growth mechanisms of flower-like and tubular MnO2 nanostructures by microwave-assisted hydrothermal method. J. Colloid Interface Sci. 369(1), 123–128 (2012)

    Article  Google Scholar 

  8. T.T. Truong, Y. Liu, Y. Ren, L. Trahey, Y. Sun, Morphological and crystalline evolution of nanostructured MnO2 and its application in lithium-air batteries. ACS Nano 6(9), 8067–8077 (2012)

    Article  Google Scholar 

  9. T. Gao, H. Fjellvag, P. Norby, Structural and morphological evolution of beta-MnO2 nanorods during hydrothermal synthesis. Nanotechnology 20(5), 055610 (2009)

    Article  Google Scholar 

  10. J. Wang, G. Zhang, L. Ren, L. Kang, Z. Hao, Z. Lei, Z.-H. Liu, Topochemical oxidation preparation of regular hexagonal manganese oxide nanoplates with birnessite-type layered structure. Cryst. Growth Des. 14(11), 5626–5633 (2014)

    Article  Google Scholar 

  11. D.M. Robinson, Y.B. Go, M. Mui, G. Gardner, Z. Zhang, D. Mastrogiovanni, E. Garfunkel, J. Li, M. Greenblatt, G.C. Dismukes, Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J. Am. Chem. Soc. 135(9), 3494–3501 (2013)

    Article  Google Scholar 

  12. W. Gu, G. Lv, L. Liao, C. Yang, H. Liu, I. Nebendahl, Z. Li, Fabrication of Fe-doped birnessite with tunable electron spin magnetic moments for the degradation of tetracycline under microwave irradiation. J. Hazard. Mater. 338, 428–436 (2017)

    Article  Google Scholar 

  13. B. Lan, X. Zheng, G. Cheng, J. Han, W. Li, M. Sun, L. Yu, The art of balance: engineering of structure defects and electrical conductivity of α-MnO2 for oxygen reduction reaction. Electrochim. Acta 283, 459–466 (2018)

    Article  Google Scholar 

  14. Y. Duan, Z. Liu, H. Jing, Y. Zhang, S. Li, Novel microwave dielectric response of Ni/Co-doped manganese dioxides and their microwave absorbing properties. J. Mater. Chem. 22(35), 18291 (2012)

    Article  Google Scholar 

  15. J.-W. Wang, Y. Chen, B.-Z. Chen, Effects of transition-metal ions on the morphology and electrochemical properties of δ-MnO2 for supercapacitors. Met. Mater. Int. 20(6), 989–996 (2014)

    Article  Google Scholar 

  16. M. Qiao, X. Lei, Y. Ma, L. Tian, W. Wang, K. Su, Q. Zhang, Facile synthesis and enhanced electromagnetic microwave absorption performance for porous core-shell Fe3O4@MnO2 composite microspheres with lightweight feature. J. Alloys Compd. 693, 432–439 (2017)

    Article  Google Scholar 

  17. R. Peng, N. Wu, Y. Zheng, Y. Huang, Y. Luo, P. Yu, L. Zhuang, Large-scale synthesis of metal-ion-doped manganese dioxide for enhanced electrochemical performance. ACS Appl. Mater. Interfaces. 8(13), 8474–8480 (2016)

    Article  Google Scholar 

  18. D.H. Park, S.H. Lee, T.W. Kim, S.T. Lim, S.J. Hwang, Y.S. Yoon, Y.H. Lee, J.H. Choy, Non-hydrothermal synthesis of 1D nanostructured manganese-based oxides: effect of cation substitution on the electrochemical performance of nanowires. Adv. Funct. Mater. 17(15), 2949–2956 (2007)

    Article  Google Scholar 

  19. W.N. Li, J. Yuan, X.F. Shen, S. Gomez-Mower, L.P. Xu, S. Sithambaram, M. Aindow, S.L. Suib, Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral molecular sieve nanomaterials. Adv. Funct. Mater. 16(9), 1247–1253 (2006)

    Article  Google Scholar 

  20. S. Devaraj, N. Munichandraiah, Electrochemical supercapacitor studies of nanostructured α-MnO2 synthesized by microemulsion method and the effect of annealing. J. Electrochem. Soc. 154, A80–A88 (2006)

    Article  Google Scholar 

  21. P. Ragupathy, H.N. Vasan, N. Munichandraiahb, Synthesis and characterization of Nano-MnO2 for electrochemical supercapacitor studies. J. Electrochem. Soc. 155, A34–A40 (2008)

    Article  Google Scholar 

  22. M. Kandasamy, A. Seetharaman, D. Sivasubramanian, A. Nithya, K. Jothivenkatachalam, N. Maheswari, M. Gopalan, S. Dillibabu, A. Eftekhari, Ni-Doped SnO2 nanoparticles for sensing and photocatalysis. ACS Appl. Nano Mater. 1(10), 5823–5836 (2018)

    Article  Google Scholar 

  23. S. Zhao, P. Li, Y. Wei, Effects of Ni doping on the luminescent and magnetic behaviors of ZnO nanocrystals. Powder Technol. 224, 390–394 (2012)

    Article  Google Scholar 

  24. Z. Yao, F. Jia, S. Tian, C. Li, Z. Jiang, X. Bai, Microporous Ni-doped TiO2 film photocatalyst by plasma electrolytic oxidation. ACS Appl. Mater. Interfaces. 2(9), 2617–2622 (2010)

    Article  Google Scholar 

  25. X. Liu, H.-S. Kim, J.-H. Hong, Z. Xu, H. Xiao, I.-S. Ahn, K.-W. Kim, Electrochemical properties of mechanically alloyed Ni-doped FeS2 cathode materials for lithium-ion batteries. Powder Technol. 256, 545–552 (2014)

    Article  Google Scholar 

  26. K. Liu, X. Li, L. Liang, J. Wu, X. Jiao, J. Xu, Y. Sun, Y. Xie, Ni-doped ZnCo2O4 atomic layers to boost the selectivity in solar-driven reduction of CO2. Nano Res. 11(6), 2897–2908 (2018)

    Article  Google Scholar 

  27. P.C. Banerjee, D.E. Lobo, R. Middag, W.K. Ng, M.E. Shaibani, M. Majumder, Electrochemical capacitance of Ni-doped metal organic framework and reduced graphene oxide composites: more than the sum of its parts. ACS Appl. Mater. Interfaces. 7(6), 3655–3664 (2015)

    Article  Google Scholar 

  28. G. Wei, Y.-E. Miao, C. Zhang, Z. Yang, Z. Liu, W.W. Tjiu, T. Liu, Ni-doped graphene/carbon cryogels and their applications as versatile sorbents for water purification. ACS Appl. Mater. Interfaces. 5(15), 7584–7591 (2013)

    Article  Google Scholar 

  29. X. Chen, Y. Huang, K. Zhang, W. Zhang, Cobalt fibers anchored with tin disulfide nanosheets as high-performance anode materials for lithium ion batteries. J. Colloid Interface Sci. 506, 291–299 (2017)

    Article  Google Scholar 

  30. X. Chen, Y. Huang, X. Han, K. Zhang, Synthesis of cobalt nanofibers @ nickel sulfide nanosheets hierarchical core-shell composites for anode materials of lithium ion batteries. Electrochim. Acta 284, 418–426 (2018)

    Article  Google Scholar 

  31. W. Mao, Q. Yao, Y. Fan, Y. Wang, X. Wang, Y. Pu, X.A. Li, Combined experimental and theoretical investigation on modulation of multiferroic properties in BiFeO3 ceramics induced by Dy and transition metals co-doping. J. Alloys Compd. 784, 117–124 (2019)

    Article  Google Scholar 

  32. G. He, Y. Duan, L. Song, X. Zhang, Doping strategy to boost electromagnetic property and gigahertz tunable electromagnetic attenuation of hetero-structured manganese dioxide. Dalton Trans. 48(7), 2407–2421 (2019)

    Article  Google Scholar 

  33. Y. Wang, H. Sun, H.M. Ang, M.O. Tadé, S. Wang, 3D-hierarchically structured MnO2 for catalytic oxidation of phenol solutions by activation of peroxymonosulfate: structure dependence and mechanism. Appl. Catal. B 164, 159–167 (2015)

    Article  Google Scholar 

  34. Y. Sun, Y. Liu, T.T. Truong, Y. Ren, Thermal transformation of δ-MnO2 nanoflowers studied by in situ TEM. Sci. China Chem. 55(11), 2346–2352 (2012)

    Article  Google Scholar 

  35. Y. Guo, Z. Lyu, X. Yang, Y. Lu, K. Ruan, Y. Wu, J. Kong, J. Gu, Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites. Compos. Part B 164, 732–739 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Supported by Program for the National Natural Science Foundation of China (Nos. 51577021, U1704253), the Fundamental Research Funds for the Central Universities (DUT17GF107). This work was supported by National Supercomputing Center in Shenzhen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuping Duan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L., Duan, Y., He, G. et al. Enhanced thermal stability and dielectric performance of δ-MnO2 by Ni2+ doping. J Mater Sci: Mater Electron 30, 15362–15370 (2019). https://doi.org/10.1007/s10854-019-01912-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01912-x

Navigation