Skip to main content
Log in

Al–Sr metal oxides and Al–Cd layered double hydroxides for the removal of Acridine orange dye in visible light exposure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study involves the preparation and utilization of Al-based catalysts for the photo-catalytic degradation of acridine orange (AO) dye. Al–Sr and Al–Cd were developed in metal oxides nanoparticles and layered double hydroxides (LDH) morphology respectively. The LDH nature of Al–Cd catalyst was confirmed via X-ray diffraction (XRD) spectrum with the characteristic peak at 2θ =11.8º. Sheet like morphology was adopted by both the catalysts as analyzed through field emission scanning electron microscope. The Al–Cd-LDH sheets were assembled above each other. The crystal phase and functional groups of the catalysts were studied through XRD and Fourier transformed infrared spectroscopy respectively. The thermo gravimetric analysis showed the greater stability for Al–Cd-LDH as compared to Al–Sr metal oxides. A band gap of 2.85 eV and 2.6 eV was calculated for Al–Sr metal oxides and Al–Cd-LDH respectively by utilizing diffuse reflectance spectroscopy. The Nitrogen adsorption/desorption isotherms indicated 62.83 m2/g surface area for Al–Cd-LDH and 24.63 m2/g for Al–Sr metal oxides. Similarly, the total pore volume and average pore sizes were 0.933 mL/g and 0.9685 nm for Al–Cd-LDH and 0.0437 mL/g and 1.0393 nm for Al–Sr metal oxides. Both catalysts showed prominent and effective results for the degradation of AO dye. Under UV–Vis light irradiation, the Al–Sr metal oxides showed approximately 90% degradation in 90 min, while Al–Cd-LDH showed less than 50% efficiency. However, with the increase of irradiation time, the degradation rate of Al–Cd-LDH was enhanced to approximately 90% after 240 min. The Al–Cd-LDH showed 29% of acridine orange dye adsorption after 240 min while Al–Sr metal oxides showed 26% adsorption after 90 min. The low catalytic performance of Al–Cd-LDH could be attributed towards the LDH nature which probably interfered the electronic moments for free radical formation. Furthermore, the effect of various parameters such as dye concentration, pH, catalyst amount and different scavengers were also evaluated. Both catalysts showed good recyclability and hence better stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Osarumwense, N. Amenaghawon, F. Aisien, Heterogeneous photocatalytic degradation of phenol in aqueous suspension of periwinkle shell ash catalyst in the presence of UV from sunlight. J. Eng. Sci. Technol. 10, 1525–1539 (2015)

    Google Scholar 

  2. S.A. Khan, S.B. Khan, T. Kamal, M. Yasir, A.M. Asiri, Antibacterial nanocomposites based on chitosan/Co-MCM as a selective and efficient adsorbent for organic dyes. Int. J. Biol. Macromol. 91, 744–751 (2016)

    Article  Google Scholar 

  3. S.A. Khan, S.B. Khan, A.M. Asiri, Toward the design of Zn–Al and Zn–Cr LDH wrapped in activated carbon for the solar assisted de-coloration of organic dyes. RSC Adv. 6, 83196–83208 (2016)

    Article  Google Scholar 

  4. S.A. Khan, S.B. Khan, A.M. Asiri, Layered double hydroxide of Cd-Al/C for the mineralization and de-coloration of dyes in solar and visible light exposure. Sci. Rep. 6, 35107 (2016)

    Article  Google Scholar 

  5. E.M. Bakhsh, S.A. Khan, H.M. Marwani, E.Y. Danish, A.M. Asiri, S.B. Khan, Performance of cellulose acetate-ferric oxide nanocomposite supported metal catalysts toward the reduction of environmental pollutants. Int. J. Biol. Macromol. 107, 668–677 (2018)

    Article  Google Scholar 

  6. S.-W. Pi, X.-J. Ju, H.-G. Wu, R. Xie, L.-Y. Chu, Smart responsive microcapsules capable of recognizing heavy metal ions. J. Colloid Interface Sci. 349, 512–518 (2010)

    Article  Google Scholar 

  7. T. Arshad, S.A. Khan, M. Faisal, Z. Shah, K. Akhtar, A.M. Asiri, A.A. Ismail, B.G. Alhogbi, S.B. Khan, Cerium based photocatalysts for the degradation of acridine orange in visible light. J. Mol. Liq. 241, 20–26 (2017)

    Article  Google Scholar 

  8. A. Mittal, D. Kaur, A. Malviya, J. Mittal, V. Gupta, Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents. J. Colloid Interface Sci. 337, 345–354 (2009)

    Article  Google Scholar 

  9. B.A. Bello, S.A. Khan, J.A. Khan, F.Q. Syed, M.B. Mirza, L. Shah, S.B. Khan, Anticancer, antibacterial and pollutant degradation potential of silver nanoparticles from Hyphaene thebaica. Biochem. Biophys. Res. Commun. 490, 889–894 (2017)

    Article  Google Scholar 

  10. B.A. Bello, S.A. Khan, J.A. Khan, F.Q. Syed, Y. Anwar, S.B. Khan, Antiproliferation and antibacterial effect of biosynthesized AgNps from leaves extract of Guiera senegalensis and its catalytic reduction on some persistent organic pollutants. J. Photochem. Photobiol. B 175, 99–108 (2017)

    Article  Google Scholar 

  11. S.A. Khan, B.A. Bello, J.A. Khan, Y. Anwar, M.B. Mirza, F. Qadri, A. Farooq, I.K. Adam, A.M. Asiri, S.B. Khan, Albizia chevalier based Ag nanoparticles: anti-proliferation, bactericidal and pollutants degradation performance. J. Photochem. Photobiol. B 182, 62–70 (2018)

    Article  Google Scholar 

  12. A. Mittal, J. Mittal, A. Malviya, V. Gupta, Adsorptive removal of hazardous anionic dye “Congo red” from wastewater using waste materials and recovery by desorption. J. Colloid Interface Sci. 340, 16–26 (2009)

    Article  Google Scholar 

  13. S. Ahmed, T. Kamal, S.A. Khan, Y. Anwar, M.T. Saeed, A. Muhammad Asiri, S. Bahadar Khan, Assessment of anti-bacterial Ni-Al/chitosan composite spheres for adsorption assisted photo-degradation of organic pollutants. Curr. Nanosci. 12, 569–575 (2016)

    Article  Google Scholar 

  14. M. Guan, C. Xiao, J. Zhang, S. Fan, R. An, Q. Cheng, J. Xie, M. Zhou, B. Ye, Y. Xie, Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 135, 10411–10417 (2013)

    Article  Google Scholar 

  15. R. Buonsanti, A. Llordes, S. Aloni, B.A. Helms, D.J. Milliron, Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. Nano Lett. 11, 4706–4710 (2011)

    Article  Google Scholar 

  16. M.Y.A. Mollah, J.A. Gomes, K.K. Das, D.L. Cocke, Electrochemical treatment of Orange II dye solution—use of aluminum sacrificial electrodes and floc characterization. J. Hazard. Mater. 174, 851–858 (2010)

    Article  Google Scholar 

  17. D. Pathania, R. Katwal, G. Sharma, M. Naushad, M.R. Khan, H. Ala’a, Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye. Int. J. Biol. Macromol. 87, 366–374 (2016)

    Article  Google Scholar 

  18. A. Gupta, A.D. Compaan, All-sputtered 14% CdS∕ CdTe thin-film solar cell with ZnO: Al transparent conducting oxide. Appl. Phys. Lett. 85, 684–686 (2004)

    Article  Google Scholar 

  19. A.F. Al-Hossainy, A. Ibrahim, M.S. Zoromba, Synthesis and characterization of mixed metal oxide nanoparticles derived from Co–Cr layered double hydroxides and their thin films. J. Mater. Sci.: Mater. Electron. 30, 11627–11642 (2019)

    Google Scholar 

  20. A.B. Slimane, A.F. Al-Hossainy, M.S. Zoromba, Synthesis and optoelectronic properties of conductive nanostructured poly (aniline-co-o-aminophenol) thin film. J. Mater. Sci.: Mater. Electron. 29, 8431–8445 (2018)

    Google Scholar 

  21. A.F. Al-Hossainy, M.S. Zoromba, New organic semiconductor thin film derived from p-toluidine monomer. J. Mol. Struct. 1156, 83–90 (2018)

    Article  Google Scholar 

  22. A.F. Al-Hossainy, A. Ibrahim, The effects of annealing temperature on the structural properties and optical constants of a novel DPEA-MR-Zn organic crystalline semiconductor nanostructure thin films. Opt. Mater. 73, 138–153 (2017)

    Article  Google Scholar 

  23. F.S.M. Hassan, A.F. Al-Hossainy, A.E. Mohamed, Diphosphine compounds, part III: UV/Visible spectroscopy and novel routes to functionalized diphosphine-M (CO) 6 complexes (M= W, Mo, or Cr). Phosphorus Sulfur Silicon 184, 2996–3022 (2009)

    Article  Google Scholar 

  24. A.F. Al-Hossainy, Synthesis, spectral, thermal, optical dispersion and dielectric properties of nanocrystalline dimer complex (PEPyr–diCd) thin films as novel organic semiconductor. Bull. Mater. Sci. 39, 209–222 (2016)

    Article  Google Scholar 

  25. A.F. Al-Hossainy, A. Ibrahim, Synthesis, structural and optical properties of novel 3-(3, 5-dimethyl-1H-pyrazol-1-yl)-1-(diphenylphosphino)-2-((diphenylphosphino) methyl)-3-methylbutanone-1, 2-diphenylethane-1, 2-diamine tungsten dicarbonyl (PyrPMB-W) nanostructure thin film. Opt. Mater. 46, 131–140 (2015)

    Article  Google Scholar 

  26. E. Nyankson, B.A. Tuffour, J. Asare, E. Annan, E.R. Rwenyagila, D.S. Konadu, A. Yaya, D. Dodoo-Arhin, Nanostructured TiO2 and their energy applications-a review. J. Eng. Appl. Sci. 8, 871–886 (2013)

    Google Scholar 

  27. C.H. Liao, C.W. Huang, J.C.S. Wu, Hydrogen production from semiconductor-based photocatalysis via water splitting. Catalysts 2, 490–516 (2012)

    Article  Google Scholar 

  28. A.S. Deshpande, D.G. Shchukin, E. Ustinovich, M. Antonietti, R.A. Caruso, Titania and mixed titania/aluminum, gallium, or indium oxide spheres: sol–gel/template synthesis and photocatalytic properties. Adv. Func. Mater. 15, 239–245 (2005)

    Article  Google Scholar 

  29. K.C. Makris, D. Sarkar, R. Datta, Aluminum-based drinking-water treatment residuals: a novel sorbent for perchlorate removal. Environ. Pollut. 140, 9–12 (2006)

    Article  Google Scholar 

  30. A.D. Bokare, W. Choi, Zero-valent aluminum for oxidative degradation of aqueous organic pollutants. Environ. Sci. Technol. 43, 7130–7135 (2009)

    Article  Google Scholar 

  31. X. Fu, L.A. Clark, Q. Yang, M.A. Anderson, Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2. Environ. Sci. Technol. 30, 647–653 (1996)

    Article  Google Scholar 

  32. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Biores. Technol. 77, 247–255 (2001)

    Article  Google Scholar 

  33. J. Zhang, Z. Xiong, X. Zhao, Graphene–metal–oxide composites for the degradation of dyes under visible light irradiation. J. Mater. Chem. 21, 3634–3640 (2011)

    Article  Google Scholar 

  34. R. Saravanan, E. Thirumal, V. Gupta, V. Narayanan, A. Stephen, The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures. J. Mol. Liq. 177, 394–401 (2013)

    Article  Google Scholar 

  35. M. Ba-Abbad, A. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Solar photocatalytic degradation of environmental pollutants using ZnO prepared by sol-gel: 2, 4-dichlorophenol as case study. Int. J. Therm. Environ. Eng. 1, 37–42 (2010)

    Article  Google Scholar 

  36. J. Colina-Márquez, F. Machuca-Martínez, G.L. Puma, Radiation absorption and optimization of solar photocatalytic reactors for environmental applications. Environ. Sci. Technol. 44, 5112–5120 (2010)

    Article  Google Scholar 

  37. M.Y. Ghaly, T.S. Jamil, I.E. El-Seesy, E.R. Souaya, R.A. Nasr, Treatment of highly polluted paper mill wastewater by solar photocatalytic oxidation with synthesized nano TiO2. Chem. Eng. J. 168, 446–454 (2011)

    Article  Google Scholar 

  38. N. Miranda-García, S. Suárez, B. Sánchez, J. Coronado, S. Malato, M.I. Maldonado, Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Appl. Catal. B 103, 294–301 (2011)

    Article  Google Scholar 

  39. L. Rizzo, S. Meric, M. Guida, D. Kassinos, V. Belgiorno, Heterogenous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals. Water Res. 43, 4070–4078 (2009)

    Article  Google Scholar 

  40. R. Poblete, E. Otal, L. Vilches, J. Vale, C. Fernández-Pereira, Photocatalytic degradation of humic acids and landfill leachate using a solid industrial by-product containing TiO2 and Fe. Appl. Catal. B 102, 172–179 (2011)

    Article  Google Scholar 

  41. Y. Su, P. Chen, F. Wang, Q. Zhang, T. Chen, Y. Wang, K. Yao, W. Lv, G. Liu, Decoration of TiO2/g-C3N4 Z-scheme by carbon dots as a novel photocatalyst with improved visible-light photocatalytic performance for the degradation of enrofloxacin. RSC Adv. 7, 34096–34103 (2017)

    Article  Google Scholar 

  42. Q. Xu, W. Chen, R. Yuan, XPS analysis of Ni and oxygen in single-sintered SrTiO3 multifunctional ceramic. J. Mater. Sci. Technol. 17, 535–537 (2001)

    Google Scholar 

  43. C.V. Schenck, J.G. Dillard, J.W. Murrray, Surface analysis and the adsorption of Co (II) on goethite. J. Colloid Interface Sci. 95, 398 (1983)

    Article  Google Scholar 

  44. R. Saravanan, V.K. Gupta, T. Prakash, V. Narayanan, A. Stephen, characterization and photocatalytic activity of novel Hg doped ZnO nano-rods prepared by thermal decomposition method. J. Mol. Liq. 178, 88–93 (2013)

    Article  Google Scholar 

  45. H.R. Pouretedal, A. Kadkhodaie, Synthetic CeO2 nano-particle catalysis of methylene blue photo degradation: kinetics and mechanism. Chin. J. Catal. 31, 1328–1334 (2010)

    Article  Google Scholar 

  46. S.S. Joshi, S.F. Patil, V. Iyer, S. Mahumuni, Radiation induced synthesis and characterization of copper nanoparticles. Nanostruct. Mater. 10, 1135–1144 (1998)

    Article  Google Scholar 

  47. N. Fairley, CasaXPS Version 2.3.15: software package for data processing. http://www.casaxps.com

  48. R. Gobel, P. Hesemann, J. Weber, E. Möller, A. Friedrich, S. Beuermann, A. Taubert, Surprisingly high, bulk liquid-like mobility of silica-confined ionic liquids. Phys. Chem. Chem. Phys. 11, 3653–3662 (2009)

    Article  Google Scholar 

  49. A.N. Okte, M.S. Resat, Y. Inel, Influence of hydrogen peroxide and methanol on the photocatalytic degradation of 1, 3-dihydroxybenzene. Toxicol. Environ. Chem. 79, 171–178 (2001)

    Article  Google Scholar 

  50. H. Shibata, Y. Ogura, Y. Sawa, Y. Kono, Hydroxyl radical generation depending on O2 or H2O by a photocatalyzed reaction in an aqueous suspension of titanium dioxide. Biosci. Biotechnol. Biochem. 62, 2306–2311 (1998)

    Article  Google Scholar 

  51. M. Pelaez, P. Falaras, V. Likodimos, K. O’Shea, A. Armah, P.S. Dunlop, J.A. Byrne, D.D. Dionysiou, Use of selected scavengers for the determination of NF-TiO2 reactive oxygen species during the degradation of microcystin-LR under visible light irradiation. J. Mol. Catal. A 425, 183–189 (2016)

    Article  Google Scholar 

  52. A. Asghar, A.A.A. Raman, W.M.A.W. Daud, Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. J. Clean. Product. 87, 826–838 (2015)

    Article  Google Scholar 

  53. T. Xu, L. Zhang, H. Cheng, Y. Zhu, Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl. Catal. B 101, 382–387 (2011)

    Article  Google Scholar 

  54. M.A. Subhan, P.C. Saha, N. Uddin, P. Sarker, Synthesis, structure, spectroscopy and photo-catalytic studies of nano multi-metal oxide MgO-Al2O3-ZnO and MgO-Al2O3-ZnO-curcumin composite. Int. J. Nano-sci. Nanotechnol. 13, 69–82 (2017)

    Google Scholar 

  55. V.P. Dhawale, V.B. Khobragade, S.D. Kulkarni, Synthesis and characterization of aluminium oxide (Al2O3) nanoparticles and its application in Azo dye decolourisation. Int. J. Environ. Chem. 2, 10–17 (2018)

    Article  Google Scholar 

  56. J.G. Yu, J. Zou, L.L. Liu, X.Y. Jiang, F.P. Jiao, X.Q. Chen, Preparation of TiO2-based photo-catalysts and their photo-catalytic degradation properties for methylene blue, rhodamine B and methyl orange. Desalin. Water Treat. 81, 282–290 (2017)

    Article  Google Scholar 

  57. I. Ullah, S. Ali, M.A. Hanif, M.A. Zia, Photo-catalytic activity of Al2O3.Fe2O3 synthesized by ultrasonic-assisted mechanical stirring. Pol. J. Environ. Stud. 26, 2777–2783 (2017)

    Article  Google Scholar 

  58. S.B. Khan, M. Faisal, M.M. Rahman, K. Akhtar, A.M. Asiri, A. Khan, K.A. Alamry, Effect of particle size on the photo-catalytic activity and sensing properties of CeO2 nanoparticles. Int. J. Electrochem. Sci. 8, 7284–7297 (2013)

    Google Scholar 

  59. A. Jamal, M.M. Rahman, M. Faisal, S.B. Khan, Studies on photo-catalytic degradation of acridine orange and chloroform sensing using as-grown antimony oxide microstructures. Mater. Sci. Appl. 2, 676–683 (2011)

    Google Scholar 

  60. C.S. Lu, C.C. Chen, L.K. Huang, P.A. Tsai, H.F. Lai, Photo-catalytic degradation of acridine orange over NaBiO3 driven by visible light irradiation. Catalysts 3, 501–516 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

The authors highly acknowledge Center of Excellence for Advanced Materials Research King Abdulaziz University Jeddah, Saudi Arabia, Department of Chemistry Bacha Khan University Charsada Khyber Pakhtunkhwa Pakistan, and Department of Chemistry, University of Swabi, Swabi for the joint research programme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shahid Ali Khan or Sher Bahadar Khan.

Ethics declarations

Conflict of interest

The authors confirm that the content of this manuscript has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.A., Arshad, T., Faisal, M. et al. Al–Sr metal oxides and Al–Cd layered double hydroxides for the removal of Acridine orange dye in visible light exposure. J Mater Sci: Mater Electron 30, 15299–15312 (2019). https://doi.org/10.1007/s10854-019-01903-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01903-y

Navigation