Skip to main content
Log in

Post-treatment of Nb2O5 compact layer in dye-sensitized solar cells for low-level lighting applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Introduction of an ultrathin compact layer in dye-sensitized solar cells (DSSCs) can improve the cell efficiency under standard one sun illumination (> 100,000 lx). Herein, an ultrathin Nb2O5 layer is deposited on the TiO2-coated photoanode using a facial dip-coating method and its effects on the cell efficiency under a low level of light intensity (300–6000 lx) is studied. The results show that the ultrathin Nb2O5 layer helps the DSSCs to improve their power conversion efficiency (PCE) through different ways under standard one sun and low power illuminations. Under strong one sun illumination, the PCE of DSSC is improved by improving the short-circuit current density (JSC) which can be attributed to an increment of the surface area of photoanode for more dye adsorption and the blocking effect of Nb2O5. Under low power illumination, the introduction of Nb2O5 blocking layer improves the fill factor by effectively suppressing the charge recombination on the photoanode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar-cell based on dye sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  2. S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Grätzel, M.K. Nazeeruddin, M. Grätzel, Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516, 4613–4619 (2008). https://doi.org/10.1016/j.tsf.2007.05.090

    Article  Google Scholar 

  3. F. Xie, S.J. Cherng, S. Lu, Y.H. Chang, W.E. Sha, S.P. Feng, C.M. Chen, W.C. Choy, Functions of self-assembled ultrafine TiO2 nanocrystals for high efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 6, 5367–5373 (2014). https://doi.org/10.1021/am5006628

    Article  Google Scholar 

  4. K.-W. Cheng, H.-J. Jhang, C.-T. Li, K.-C. Ho, Solution-growth-synthesized Cu(In, Ga)Se2 nanoparticles in ethanol bath for the applications of dye-sensitized solar cell and photoelectrochemical reaction. J. Taiwan Inst. Chem. Eng. 74, 136–145 (2017). https://doi.org/10.1016/j.jtice.2017.02.010

    Article  Google Scholar 

  5. Y.-J. Lin, J.-W. Chen, P.-T. Hsiao, Y.-L. Tung, C.-C. Chang, C.-M. Chen, Efficiency improvement of dye-sensitized solar cells by in situ fluorescence resonance energy transfer. J. Mater. Chem. A 5, 9081–9089 (2017). https://doi.org/10.1039/c7ta00638a

    Article  Google Scholar 

  6. C.H. Huang, Y.W. Chen, C.M. Chen, Chromatic titanium photoanode for dye-sensitized solar cells under rear illumination. ACS Appl. Mater. Interfaces 10, 2658–2666 (2018). https://doi.org/10.1021/acsami.7b18351

    Article  Google Scholar 

  7. K.S.K. Reddy, Y.C. Chen, C.C. Wu, C.W. Hsu, Y.C. Chang, C.M. Chen, C.Y. Yeh, Cosensitization of structurally simple porphyrin and anthracene-based dye for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 10, 2391–2399 (2018). https://doi.org/10.1021/acsami.7b12960

    Article  Google Scholar 

  8. C.-M. Chen, H.-S. Shiu, S.-J. Cherng, T.-C. Wei, Preparation of polymer film of micro-porous or island-like structure and its application in dye-sensitized solar cell. J. Power Sources 188, 319–322 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.138

    Article  Google Scholar 

  9. S. Santhaveesuk, S. Pukird, C. Kahattha, A development nanocrystalline TiO2 based on dye sensitized solar cells with solid state electrolyte. Mater. Today Proc. 5, 14086–14090 (2018). https://doi.org/10.1016/j.matpr.2018.02.067

    Article  Google Scholar 

  10. Y. Fang, P. Ma, N. Fu, X. Zhou, S. Fang, Y. Lin, Surface NH2-rich nanoparticles: solidifying ionic-liquid electrolytes and improving the performance of dye-sensitized solar cells. J. Power Sources 370, 20–26 (2017). https://doi.org/10.1016/j.jpowsour.2017.10.007

    Article  Google Scholar 

  11. Y.-C. Chen, Y.-C. Chang, C.-M. Chen, The study of blocking effect of Nb2O5 in dye-sensitized solar cells under low power lighting. J. Electrochem. Soc. 165, F409–F416 (2018). https://doi.org/10.1149/2.0091807jes

    Article  Google Scholar 

  12. C.-H. Chen, P.-T. Chou, T.-C. Yin, K.-F. Chen, M.-L. Jiang, Y.J. Chang, C.-K. Tai, B.-C. Wang, Rational design of cost-effective dyes for high performance dye-sensitized cells in indoor light environments. Org. Electron. 59, 69–76 (2018). https://doi.org/10.1016/j.orgel.2018.04.048

    Article  Google Scholar 

  13. F. De Rossi, T. Pontecorvo, T.M. Brown, Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting. Appl. Energy 156, 413–422 (2015). https://doi.org/10.1016/j.apenergy.2015.07.031

    Article  Google Scholar 

  14. Y.-C. Liu, H.-H. Chou, F.-Y. Ho, H.-J. Wei, T.-C. Wei, C.-Y. Yeh, A feasible scalable porphyrin dye for dye-sensitized solar cells under one sun and dim light environments. J. Mater. Chem. A 4, 11878–11887 (2016). https://doi.org/10.1039/c6ta04097g

    Article  Google Scholar 

  15. P. Zhai, H. Lee, Y.-T. Huang, T.-C. Wei, S.-P. Feng, Study on the blocking effect of a quantum-dot TiO2 compact layer in dye-sensitized solar cells with ionic liquid electrolyte under low-intensity illumination. J. Power Sources 329, 502–509 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.118

    Article  Google Scholar 

  16. M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S.M. Zakeeruddin, J.-E. Moser, M. Grätzel, A. Hagfeldt, Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 11, 372–378 (2017). https://doi.org/10.1038/nphoton.2017.60

    Article  Google Scholar 

  17. C.-P. Lee, C.-A. Lin, T.-C. Wei, M.-L. Tsai, Y. Meng, C.-T. Li, K.-C. Ho, C.-I. Wu, S.-P. Lau, J.-H. He, Economical low-light photovoltaics by using the Pt-free dye-sensitized solar cell with graphene dot/PEDOT:PSS counter electrodes. Nano Energy 18, 109–117 (2015). https://doi.org/10.1016/j.nanoen.2015.10.008

    Article  Google Scholar 

  18. Y.S. Tingare, N.S.N. Vinh, H.-H. Chou, Y.-C. Liu, Y.-S. Long, T.-C. Wu, T.-C. Wei, C.-Y. Yeh, New acetylene-bridged 9,10-conjugated anthracene sensitizers: application in outdoor and indoor dye-sensitized solar cells. Adv. Energy Mater. 7, 1700032 (2017). https://doi.org/10.1002/aenm.201700032

    Article  Google Scholar 

  19. J.-L. Lan, T.-C. Wei, S.-P. Feng, C.-C. Wan, G. Cao, Effects of iodine content in the electrolyte on the charge transfer and power conversion efficiency of dye-sensitized solar cells under low light intensities. J. Phys. Chem. C 116, 25727–25733 (2012). https://doi.org/10.1021/jp309872n

    Article  Google Scholar 

  20. N. Sridhar, D. Freeman, A study of dye sensitized solar cells under indoor and low level outdoor lighting comparison to organic and inorganic thin film solar cells and methods to address maximum power point tracking. in 26 th EUPVSEC 2011, p. 232

  21. K. Zhu, E.A. Schiff, N.G. Park, J. van de Lagemaat, A.J. Frank, Determining the locus for photocarrier recombination in dye-sensitized solar cells. Appl. Phys. Lett. 80, 685–687 (2002). https://doi.org/10.1063/1.1436533

    Article  Google Scholar 

  22. B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985–3990 (2009). https://doi.org/10.1021/ja8078972

    Article  Google Scholar 

  23. S.G. Chen, S. Chappel, Y. Diamant, A. Zaban, Preparation of Nb2O5 coated TiO2 nanoporous electrodes and their application in dye-sensitized solar cells. Chem. Mater. 13, 4629–4634 (2001). https://doi.org/10.1021/cm010343b

    Article  Google Scholar 

  24. K.-S. Ahn, M.-S. Kang, J.-K. Lee, B.-C. Shin, J.-W. Lee, Enhanced electron diffusion length of mesoporous TiO2 film by using Nb2O5 energy barrier for dye-sensitized solar cells. Appl. Phys. Lett. 89, 013103 (2006). https://doi.org/10.1063/1.2218831

    Article  Google Scholar 

  25. E. Barea, X. Xu, V. González-Pedro, T. Ripollés-Sanchis, F. Fabregat-Santiago, J. Bisquert, Origin of efficiency enhancement in Nb2O5 coated titanium dioxide nanorod based dye sensitized solar cells. Energy Environ. Sci. 4, 3414 (2011). https://doi.org/10.1039/c1ee01193f

    Article  Google Scholar 

  26. P. Du, L. Song, J. Xiong, Y. Yuan, L. Wang, Z. Xi, D. Jin, J. Chen, TiO2/Nb2O5 core–sheath nanofibers film: co-electrospinning fabrication and its application in dye-sensitized solar cells. Electrochem. Commun. 25, 46–49 (2012). https://doi.org/10.1016/j.elecom.2012.09.013

    Article  Google Scholar 

  27. H.N. Kim, J.H. Moon, Enhanced photovoltaic properties of Nb2O5-coated TiO2 3D ordered porous electrodes in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 4, 5821–5825 (2012). https://doi.org/10.1021/am3014554

    Article  Google Scholar 

  28. W. Liu, C. Hong, H.-G. Wang, M. Zhang, M. Guo, Enhanced photovoltaic performance of fully flexible dye-sensitized solar cells based on the Nb2O5 coated hierarchical TiO2 nanowire-nanosheet arrays. Appl. Surf. Sci. 364, 676–685 (2016). https://doi.org/10.1016/j.apsusc.2015.12.197

    Article  Google Scholar 

  29. Y. Diamant, S.G. Chen, O. Melamed, A. Zaban, Core–shell nanoporous electrode for dye sensitized solar cells the effect of the SrTiO3 shell on the electronic properties of the TiO2 core. J. Phys. Chem. B 107, 1977–1981 (2003). https://doi.org/10.1021/jp027827v

    Article  Google Scholar 

  30. K.E. Roelofs, T.P. Brennan, J.C. Dominguez, C.D. Bailie, G.Y. Margulis, E.T. Hoke, M.D. McGehee, S.F. Bent, Effect of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state CdS quantum dot-sensitized solar cells. J. Phys. Chem. C 117, 5584–5592 (2013). https://doi.org/10.1021/jp311846r

    Article  Google Scholar 

  31. S.K. Cushing, J. Li, F. Meng, T.R. Senty, S. Suri, M. Zhi, M. Li, A.D. Bristow, N. Wu, Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 134, 15033–15041 (2012). https://doi.org/10.1021/ja305603t

    Article  Google Scholar 

  32. S. Suresh, G.E. Unni, M. Satyanarayana, A.S. Nair, V.P.M. Pillai, Plasmonic Ag@Nb2O5 surface passivation layer on quantum confined SnO2 films for high current dye-sensitized solar cell applications. Electrochim. Acta 289, 1–12 (2018). https://doi.org/10.1016/j.electacta.2018.08.078

    Article  Google Scholar 

  33. S. Suresh, G.E. Unni, M. Satyanarayana, A.S. Nair, V.P.M. Pillai, Ag@ Nb2O5 plasmonic blocking layer for higher efficiency dye-sensitized solar cells. Dalton Trans. 47, 4685–4700 (2018). https://doi.org/10.1039/C7DT04825D

    Article  Google Scholar 

  34. T.C. Wei, C.C. Wan, Y.Y. Wang, Poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells. Appl. Phys. Lett. 88, 103122 (2006). https://doi.org/10.1063/1.2186069

    Article  Google Scholar 

  35. T.-C. Wei, C.-C. Wan, Y.-Y. Wang, C.-M. Chen, H.-S. Shiu, Immobilization of poly (N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium–tin oxide glass and its application in dye-sensitized solar cells. J. Phys. Chem. C 111, 4847–4853 (2007). https://doi.org/10.1021/jp067501c

    Article  Google Scholar 

  36. J.-L. Lan, C.-C. Wan, T.-C. Wei, W.-C. Hsu, Y.-H. Chang, Durability test of PVP-capped Pt nanoclusters counter electrode for highly efficiency dye-sensitized solar cell. Prog. Photovolt. Res. Appl. 20, 44–50 (2012). https://doi.org/10.1002/pip.1107

    Article  Google Scholar 

  37. A. Zaban, M. Greenshtein, J. Bisquert, Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. ChemPhysChem 4, 859–864 (2003). https://doi.org/10.1002/cphc.200200615

    Article  Google Scholar 

  38. J. Liang, G. Zhang, W. Sun, Post-treatment on dye-sensitized solar cells with TiCl4 and Nb2O5. RSC Adv. 4, 6746 (2014). https://doi.org/10.1039/c3ra46188b

    Article  Google Scholar 

  39. L. Jiang, L. Sun, D. Yang, J. Zhang, Y.J. Li, K. Zou, W.Q. Deng, Niobium-doped (001)-dominated anatase TiO2 nanosheets as photoelectrode for efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 9, 9576–9583 (2017). https://doi.org/10.1021/acsami.6b14147

    Article  Google Scholar 

  40. K. Sayama, H. Sugihara, H. Arakawa, Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chem. Mater. 10, 3825–3832 (1998). https://doi.org/10.1021/cm980111l

    Article  Google Scholar 

  41. J. Bisquert, A. Zaban, P. Salvador, Analysis of the mechanisms of electron recombination in nanoporous TiO2 dye-sensitized solar cells. Nonequilibrium steady-state statistics and interfacial electron transfer via surface states. J. Phys. Chem. B 106, 8774–8782 (2002). https://doi.org/10.1021/jp026058c

    Article  Google Scholar 

  42. X. Lu, X. Mou, J. Wu, D. Zhang, L. Zhang, F. Huang, F. Xu, S. Huang, Improved-performance dye-sensitized solar cells using Nb-doped TiO2 electrodes: efficient electron injection and transfer. Adv. Funct. Mater. 20, 509–515 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the “Innovation and Development Center of Sustainable Agriculture” from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan. This work was also financially supported by the Ministry of Science and Technology (106-2119-M-005-001) in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Ming Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, KW., Chen, LS. & Chen, CM. Post-treatment of Nb2O5 compact layer in dye-sensitized solar cells for low-level lighting applications. J Mater Sci: Mater Electron 30, 15105–15115 (2019). https://doi.org/10.1007/s10854-019-01883-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01883-z

Navigation