Skip to main content
Log in

Electrochemical detection of Chromium(VI) using NiO nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the detection of toxic heavy metal ion Chromium(VI) through a simpler cyclic voltammetry study. The sol–gel synthesized Nickel Oxide (NiO) nanoparticles were coated onto the fluorine doped tin oxide plate used as a working electrode for the heavy metal detection. The synthesized nanoparticles were characterized using X-ray diffraction, Fourier Transform Infrared Spectroscopy and UV–Vis Spectroscopy. The effect of varying concentration of chromium at different scan rate was studied in a three-electrode system with hydrochloric acid as electrolyte within a potential window from − 0.4 to − 0.8 V. Oxidation and reduction potentials were studied and it reflected a diffusion controlled process. The obtained experimental data were compared with the theoretical calculations using the Randles–Servick equation. Atomic Absorption spectroscopy was applied for the quantitative determination of the metal. The results suggested the efficacy of synthesized NiO nanoparticles for the detection of heavy metal ion via electrochemical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.-C. Tsai, P.-Y. Chen, Voltammetric study and electrochemical detection of hexavalent chromium at gold nanoparticle-electrodeposited indium tinoxide (ITO) electrodes in acidic media. Talanta 76, 533–539 (2008)

    Article  Google Scholar 

  2. M. Shadreck, T. Mugadza, Chromium, an essential nutrient and pollutant: a review. Afr. J. Pure Appl. Chem. 7(9), 310–317 (2013)

    Google Scholar 

  3. W. Jin, K. Yan, Recent advances in electrochemical detection of toxic Cr(VI). R. Soc. Chem. 5, 37440–37450 (2015)

    Google Scholar 

  4. S. Wu, N.C. Sekar, S.N. Tan, H. Xie, S.H. Ng, Determination of chromium (III) by differential pulse stripping voltammetry at a chitosan–gold nanocomposite modified screen printed electrode. Analyt. Methods 8, 962–967 (2016)

    Article  Google Scholar 

  5. N. Elgrishi, K. Rountree, B. McCarthy, E. Rountree, T. Eisenhart, J. Dempsey, A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018)

    Article  Google Scholar 

  6. A.M. Soleimanpour, S.V. Khare, A.H. Jayatissa, Enhancement of hydrogen gas sensing of nanocrystalline nickel oxide by pulsed-laser irradiation. Appl. Mater. Interf. 4, 4651–4657 (2012)

    Article  Google Scholar 

  7. H. Karimi-Maleh, M. Salimi-Amiri, F. Karimi, M.A. Khalilzadeh, M. Baghayeri, A voltammetric sensor based on NiO nanoparticle-modified carbon-paste electrode for determination of cysteamine in the presence of high concentration of tryptophan. J. Chem. (2013). https://doi.org/10.1155/2013/946230

    Google Scholar 

  8. S. Wyantuti, Y.W. Hartati, C. Panatarani, R. Tjokronegoro, Cyclic voltammetric study of Chromium(VI) and Chromium(III) on the gold nanoparticles-modified glassy carbon electrode. Proced. Chem. 17, 170–176 (2015)

    Article  Google Scholar 

  9. G. Liu, Y. Yinglin, W.U. Hong, Yuehelin, Voltammetric detection of Cr(VI) with disposable screen-printed electrode modified with gold nanoparticles. Environ. Sci. Technol. 41(23), 8129–8134 (2007)

    Article  Google Scholar 

  10. D.C. Prabhakaran, J. Riotte, Y. Sivry, S. Subramanian, Electroanalytical detection of Cr(VI) and Cr(III) ions using a novel microbial sensor. Electroanalysis 29, 1–11 (2017)

    Article  Google Scholar 

  11. J. Gangwar, K.K. Dey, S.K. Tripathi, M. Wan, R.R. Yadav, R.K. Singh, A.K. Srivastava, NiO-based nanostructures with efficient optical and electrochemical properties for high-performance nanofluids. Nanotechnology 24, 01–07 (2013)

    Article  Google Scholar 

  12. S. Mohan, P. Srivastava, S.N. Maheshwari, S. Sundarb, R. Prakash, Nano-structured nickel oxide based DNA biosensor for detection of visceral leishmaniasis (Kala-azar). Analyst 136, 2845 (2011)

    Article  Google Scholar 

  13. N. Talebian, M. Kheiri, Sol-gel derived nanostructured nickel oxide films: effect of solvent on crystallographic orientations. Solid State Sci. 27, 79–83 (2014)

    Article  Google Scholar 

  14. M. El-Kemary, N. Nagy, I. El-Mehasseb, Nickel oxide nanoparticles: synthesis and spectral studies of interactions with glucose. Mater. Sci. Semicond. Process. 16, 1747–1752 (2013)

    Article  Google Scholar 

  15. A. Roychoudhury, S. Basu, S.K. Jha, Dopamine biosensor based on surface functionalized nanostructured nickel oxide platform. Biosens. Bioelectron. 84, 72–81 (2016)

    Article  Google Scholar 

  16. A.A. Al-Ghamdia, Waleed E. Mahmouda, S.J. Yaghmoura, F.M. Al-Marzoukia, Structure and optical properties of nanocrystalline NiO thin film synthesized by sol–gel spin-coating method. J. Alloys Compd. 486, 9–13 (2009)

    Article  Google Scholar 

  17. A. Barakat, M. Al-Noaimi, M. Suleiman, A.S. Aldwayyan, B. Hammouti, T.B. Hadda, S.F. Haddad, A. Boshaala, I. Warad, One step synthesis of NiO nanoparticles via solid-state thermal decomposition at low-temperature of novel aqua(2,9-dimethyl-1,10-phenanthroline)NiCl2 complex. Int. J. Mol. Sci. 14, 23941–23954 (2013)

    Article  Google Scholar 

  18. D.-H. Park, Optimization of nickel oxide-based electrochromic thin films. Mater. Chem. Univ. Sci. Technol. I, 1–136 (2010)

    Google Scholar 

  19. J.C.W. Ouedraogo, I. Tapsoba, B. Guel, F.S. Sib, Y.L. Bonzi-Coulibaly, Cyclic voltammetry and reduction mechanistic studies of Styrylpyrylium perchlorates. Bull. Chem. Soc. Ethiop. 27(1), 117–124 (2013)

    Google Scholar 

  20. J. Derek Woollins, Inorganic Experiments, 3rd revised edn. (Wiley, Hoboken, 2010), p. 288

    Google Scholar 

  21. A.G.-M. Ferrari, C.W. Foster, P.J. Kelly, D.A.C. Brownson, C.E. Banks, Determination of the electrochemical area of screen-printed electrochemical sensing platforms. Biosensors 8, 01–10 (2018)

    Google Scholar 

  22. M.K. Mishra, Fourier transform infrared spectrophotometry studies of chromium trioxide-phthalic acid complexes. Chem. Sci. Trans. 5(3), 770–774 (2016)

    Google Scholar 

  23. F.I. Dar, K.R. Moonooswamy, M. Es-Souni, Morphology and property control of NiO nanostructures for supercapacitor applications. Nanoscale Res. Lett. 8, 01–07 (2013)

    Article  Google Scholar 

  24. K. Nouneh, M. Oyama, R. Diaz, M. Abd-Lefdil, I.V. Kityk, M. Bousmin, Nanoscale synthesis and optical features of metallic nickel nanoparticles by wet chemical approaches. J. Alloys Compd. 509, 5882–5886 (2011)

    Article  Google Scholar 

  25. S. Khamlicha, M. Maaza, Cr/α-Cr2O3 monodispersed meso-spherical particles for mid-temperature solar absorber application. Energy Proced. 68, 31–36 (2015)

    Article  Google Scholar 

  26. N.G. Semaltianos, E. Hendry, H. Chang, M.L. Wears, Laser ablation of a bulk Cr target in liquids for nanoparticle synthesis. RSC Adv. 4, 50406 (2014)

    Article  Google Scholar 

  27. R.A. Perkins, R.A. Rapp, The concentration dependent diffusion of chromium in nickel oxide. Metall. Trans. 4, 01–02 (1973)

    Google Scholar 

  28. Flame atomic absorption spectroscopy manual, Agilent Technologies, pp. 1–166

  29. A. Sahuquillo, R. Rubio, G. Rauret, B. Griepink, Determination of total chromium in sediments by FAAS. Fresenius J. Anal. Chem. 352, 572–576 (1995)

    Article  Google Scholar 

  30. L. Wilson, The analysis of aluminium alloys by atomic absorption spectroscopy with special reference to the determination of chromium and zirconium. Aural. Ckim. Acla 40, 503–512 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Subramanian.

Ethics declarations

Conflict of interest

Authors confirm that this work is original and has not been published elsewhere or is it not currently under consideration for publication elsewhere. The authors also declare no potential conflict of interest financially or non-financially, directly or indirectly related to the work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 824 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kowsalya, B., Anusha Thampi, V.V., Sivakumar, V. et al. Electrochemical detection of Chromium(VI) using NiO nanoparticles. J Mater Sci: Mater Electron 30, 14755–14761 (2019). https://doi.org/10.1007/s10854-019-01847-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01847-3

Navigation