Skip to main content
Log in

Comparison of structural and optical properties of CeO2 and CeO2:Eu3+ nanoparticles synthesized via sol–gel and flame spray pyrolysis methods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Over the last decades, a considerable attention has been drawn on the cerium dioxide (ceria, CeO2) due to promising changes in physical and chemical properties in nanoscale. The researches on CeO2 and its structural and morphological modifications have brought about remarkable applications as optical devices, sensors, medical equipments and luminescent materials. For instance, rare earth (RE) ion-doped cerium oxides have exhibited enhanced peculiar optical, catalytic and magnetic properties with respect to the dopant-free CeO2 nanoparticles. Herein we aimed to compare characteristics of undoped (CeO2) and europium (Eu3+) doped ceria (CeO2:Eu3+) nanoparticles synthesized by sol–gel (SG) and one-step flame spray pyrolysis (FSP) methods. In this work, fabricated nanoparticles were evaluated in terms of the structural, morphological, chemical and optical properties by using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron (XPS) and photoluminescence spectroscopy (PL), respectively. Nanoparticles in the intended crystalline CeO2 structure were obtained for both methods. Spherical particles in nanoscale (particle size < 100 nm) and sharp edged blocky particles in sub-micron size (particles size range 200–1000 nm) were produced through FSP and SG, respectively. Nevertheless, no significant difference due to the difference in particle size was observed in optical properties. On the other hand, Eu3+ doped particles of both methods exhibited longer decay time than the undoped particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Fernández‐García, J.A. Rodriguez, Encycl. Inorg. Bioinorg. Chem. (2011). https://doi.org/10.1002/9781119951438.eibc0331

    Google Scholar 

  2. F. Charbgoo, M. Bin Ahmad, M. Darroudi, Int. J. Nanomed. 12, 1401 (2017)

    Article  Google Scholar 

  3. G. Wang, Q. Mu, T. Chen, Y. Wang, J. Alloys Compd. 493, 202 (2010)

    Article  Google Scholar 

  4. S. Schmitt-Rink, C.M. Varma, A.F.J. Levi, Phys. Rev. Lett. 66, 2782 (1991)

    Article  Google Scholar 

  5. L. Li, H.K. Yang, B.K. Moon, Z. Fu, C. Guo, J.H. Jeong, S.S. Yi, K. Jang, H.S. Lee, J. Phys. Chem. C 113, 610 (2008)

    Article  Google Scholar 

  6. G. Vimal, K.P. Mani, P.R. Biju, C. Joseph, N.V. Unnikrishnan, M.A. Ittyachen, Appl. Nanosci. 5, 837 (2015)

    Article  Google Scholar 

  7. Q. Yuan, H.-H. Duan, L.-L. Li, L.-D. Sun, Y.-W. Zhang, C.-H. Yan, J. Colloid Interface Sci. 335, 151 (2009)

    Article  Google Scholar 

  8. X.-D. Wang, X.-H. Liu, S.-J. Chen, M. Li, M. Liu, Spectrosc. Spectr. Anal. 27, 2182 (2007)

    Google Scholar 

  9. T. Masui, K. Fujiwara, K. Machida, G. Adachi, T. Sakata, H. Mori, Chem. Mater. 9, 2197 (1997)

    Article  Google Scholar 

  10. I. Yamaguchi, M. Watanabe, T. Shinagawa, M. Chigane, M. Inaba, A. Tasaka, M. Izaki, ACS Appl. Mater. Interfaces, 1, 1070 (2009)

  11. I. Yamaguchi, M. Watanabe, T. Shinagawa, M. Chigane, M. Inaba, A. Tasaka, M. Izaki, ACS Appl. Mater. Interfaces 1, 1070 (2009)

    Article  Google Scholar 

  12. M. Dubau, J. Lavková, I. Khalakhan, S. Haviar, V. Potin, V. Matolín, I. Matolínová, ACS Appl. Mater. Interfaces 6, 1213 (2014)

    Article  Google Scholar 

  13. T. Masui, H. Hirai, N. Imanaka, G. Adachi, T. Sakata, H. Mori, J. Mater. Sci. Lett. 21, 489 (2002)

    Article  Google Scholar 

  14. L. Mädler, H.K. Kammler, R. Mueller, S.E. Pratsinis, J. Aerosol Sci. 33, 369 (2002)

    Article  Google Scholar 

  15. T. Sahm, L. Mädler, A. Gurlo, N. Barsan, S.E. Pratsinis, U. Weimar, Sensor Actuat B-Chem. 98, 148 (2004)

  16. H.Q. Zhou, M. Wang, X. Jiang, G.J. Liu, Q. Gu, S.T. Liu, Adv. Mater. Res. 79, 597 (2009)

    Article  Google Scholar 

  17. M. Oikawa, S. Fujihara, J. Eur. Ceram. Soc. 25, 2921 (2005)

    Article  Google Scholar 

  18. S. Yildirim, E.C. Karsu Asal, K. Ertekin, E. Celik, J. Lumin. 187, 304 (2017)

    Article  Google Scholar 

  19. E. Longo, M. Ramirez, L.S.R. Rocha, A.Z. Simões, J. Cortés, R. Deus, M.A. Ponce, J. Andres, Mater. Res. Bull. 70, 416 (2015)

    Article  Google Scholar 

  20. Z.-L. Wang, G.-R. Li, Y.-N. Ou, Z.-P. Feng, D.-L. Qu, Y.-X. Tong, J. Phys. Chem. C 115, 351 (2011)

    Article  Google Scholar 

  21. A.A. Ansari, J. Semicond. 31, 053001 (2010)

    Article  Google Scholar 

  22. I.V. Zagaynov, S.V. Kutsev, Appl. Nanosci. 4, 339 (2014)

    Article  Google Scholar 

  23. S. Fujihara, M. Oikawa, J. Appl. Phys. 95, 8002 (2004)

    Article  Google Scholar 

  24. Mİ. Katı, O. Yılmaz, S. Gültekin, E. Çelik, S. Yıldırım, İ.Ç. Keskin, J. Lumin. 206, 59 (2018)

    Google Scholar 

  25. L. Li, H.K. Yang, B.K. Moon, Z. Fu, C. Guo, J.H. Jeong, S.S. Yi, K. Jang, H.S. Lee, J. Phys. Chem. C 113, 610 (2009)

    Article  Google Scholar 

  26. J.F. Moulder, in Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, ed. by J. Chastain, R.C. King Jr (Physical Electronics, Eden Prairie, MN, 1995)

  27. K. Kuntaiah, P. Sudarsanam, B.M. Reddy, A. Vinu, RSC Adv. 3, 7953 (2013)

    Article  Google Scholar 

  28. A. Kumar, S. Babu, A.S. Karakoti, A. Schulte, S. Seal, Langmuir 25, 10998 (2009)

    Article  Google Scholar 

  29. G.B. Della Mea, L.P. Matte, A.S. Thill, F.O. Lobato, E.V. Benvenutti, L.T. Arenas, A. Jürgensen, R. Hergenröder, F. Poletto, F. Bernardi, Appl. Surf. Sci. 422, 1102 (2017)

    Article  Google Scholar 

  30. J.M. López, A.L. Gilbank, T. García, B. Solsona, S. Agouram, L. Torrente-Murciano, Appl. Catal. B 174–175, 403 (2015)

    Article  Google Scholar 

  31. C. Barth, C. Laffon, R. Olbrich, A. Ranguis, P. Parent, M. Reichling, Sci. Rep. 6, 2 (2016)

    Article  Google Scholar 

  32. T. Naganuma, E. Traversa, Biomaterials 35, 4441 (2014)

    Article  Google Scholar 

  33. S. Babu, A. Schulte, S. Seal, Appl. Phys. Lett. 92, 1 (2008)

    Article  Google Scholar 

  34. S. Deshpande, S. Patil, S.V. Kuchibhatla, S. Seal, Appl. Phys. Lett. 87, 1 (2005)

    Article  Google Scholar 

  35. T. Hasegawa, S.M.F. Shahed, Y. Sainoo, A. Beniya, N. Isomura, Y. Watanabe, T. Komeda, J. Chem. Phys. 140, 044711 (2014)

    Article  Google Scholar 

  36. M.A. Henderson, C.L. Perkins, M.H. Engelhard, S. Thevuthasan, C.H.F. Peden, Surf. Sci. 526, 1 (2003)

    Article  Google Scholar 

  37. C.D. Wagner, D.A. Zatko, R.H. Raymond, Anal. Chem. 52, 1445 (1980)

    Article  Google Scholar 

  38. M. Melchionna, P. Fornasiero, Mater. Today 17, 349 (2014)

    Article  Google Scholar 

  39. H. Guo, Y. Qiao, Appl. Surf. Sci. 254, 1961 (2008)

    Article  Google Scholar 

  40. K.Y. Jung, J.C. Lee, D.S. Kim, B.K. Choi, W.J. Kang, J. Lumin. 192, 1313 (2017)

    Article  Google Scholar 

  41. M. Maheshwary, S. Singh, B.P. Singh, P. Singh, R.A. Singh, S.B. Rai, S. Singh, V.K. Sonu, P.V. Ramakrishna, A. Bahadur, RSC Adv. 5, 55977 (2015)

    Article  Google Scholar 

  42. Z.C. Orel, B. Orel, Phys. Status Solidi 186, K33 (1994)

    Article  Google Scholar 

  43. S. Demirci, B. Öztürk, S. Yildirim, F. Bakal, M. Erol, O. Sancakoğlu, R. Yigit, E. Celik, T. Batar, Mater. Sci. Semicond. Process. 34, 154 (2015)

    Article  Google Scholar 

  44. A.V. Emeline, G.N. Kuzmin, D. Purevdorj, V.K. Ryabchuk, N. Serpone, J. Phys. Chem. B 104, 2989 (2000)

    Article  Google Scholar 

  45. S. Yildirim, S. Demirci, K. Ertekin, E. Celik, Z.A. Alicikus, J. Adv. Ceram. 6, 33 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Synthesis and characterization measurements performed at Dokuz Eylul University, Center for Fabrication and Applications of Electronic Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Yildirim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildirim, S., Akalin, S.A., Oguzlar, S. et al. Comparison of structural and optical properties of CeO2 and CeO2:Eu3+ nanoparticles synthesized via sol–gel and flame spray pyrolysis methods. J Mater Sci: Mater Electron 30, 13749–13756 (2019). https://doi.org/10.1007/s10854-019-01757-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01757-4

Navigation