Skip to main content
Log in

Hole/electron transport layers in tin-doped SBLN nano materials for hybrid solar cell applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, layered perovskite SBN was investigated in a new-doped form for hole as well as electron transport layer (HTL/ETL) in perovskite solar cells. This work was targeted to determine utility of bismuth layer SBN materials as an active layer in hybrid perovskite solar cells. Thoroughly hard ball-milled compositions Sr1−xSnxBi1.95La0.05Nb2O9 (x = 0.0, 0.01, 0.03, 0.05, 0.1 and 0.2) were prepared by microwave synthesis to obtain fine (~ 10–60 nm) mesoporous particle network of atomic level substitutions. Microwave synthesis was crucial in modifying dielectric, semiconducting and optical characteristics of prepared SBN materials. The optical energy band gap and hall resistivity decreased in continuous manner on tin doping. The role of metallic tin as dopant in sharpening redox peaks and decreasing capacitive reactance of grain boundaries was investigated in detail using cyclic voltammetry and impedance spectroscopy respectively. The tin being more polar covalent than strontium augmented dielectric response too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.A.P. de Arauzo, J.F. Scott, Ferroelectric memories. Science 246, 1400 (1989)

    Article  Google Scholar 

  2. Y. Wu, G. Coa, Ferroelectric and dielectric properties of strontium bismuth niobate vanadates. J. Mater. Res. 15, 1583–1590 (2000)

    Article  Google Scholar 

  3. P. Nayak, T. Bandapanda, A.K. Singh, S. Panigrahi, An approach or correlating the structural and electrical properties of Zr4+ modified SrBi4Ti4O15/SBT ceramic. RSC Adv. 7, 16319 (2017)

    Article  Google Scholar 

  4. B.H. Venkataraman, K.B.R. Verma, Structural, dielectric, pyroelectric and ferroelectric properties of glass nano composite lithium borate-strontium bismuth vanadium niobate. Ferroelectr. Lett. 33, 3–4 (2006)

    Article  Google Scholar 

  5. N. Park, Perovskite solar cells: an emerging photovoltaic technology. Mater. Today 18, 65–72 (2015)

    Article  Google Scholar 

  6. A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, MdK Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334, 629–634 (2011)

    Article  Google Scholar 

  7. B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991)

    Article  Google Scholar 

  8. Y. Shimakawa, Y. Kubo, Y. Nakagawa, S. Goto, T. Kamiyama, H. Asano, F. Izumi, Crystal structure and ferroelectric properties of ABi2Ta2O9 (A = Ca, Sr, and Ba). Phys. Rev. B 61, 10 (2000)

    Article  Google Scholar 

  9. J.H. Lee, J. Hoon Lee, E.H. Kong, H.M. Jang, The nature of hydrogen-bonding interaction in the prototypic hybrid halide perovskite, tetragonal CH3NH3PbI3. Sci. Rep. 21687, 6 (2016)

    Google Scholar 

  10. T.S. Velayutham, N.I.F. Salim, W.C. Gan, W.A. Majid, Effect of cerium addition on the microstructure, electrical and relaxor behavior of Sr0. 5Ba0. 5Nb2O6 ceramics. J. Alloys Compd. 666, 334–340 (2016)

    Article  Google Scholar 

  11. H. Miyazawa, E. Natori, S. Miyashita, T. Shimoda, F. Ishii, T. Oguchi, Electronic states of perovskite-type oxides and ferroelectricity. Jpn. J. Appl. Phys. 39, 5679 (2000)

    Article  Google Scholar 

  12. D.B. Williams, C.B. Carter, Transmission Electron Microscopy (Plenum Press, Berlin, 1996), pp. 267–278

    Book  Google Scholar 

  13. J.D. Ng, B. Lorber, J. Witz, A. Théobald-Dietrich, D. Kern, R. Giegé, The crystallization of biological macromolecules from precipitates: evidence for ostwald ripening. J. Cryst. Growth 168, 50–62 (1996)

    Article  Google Scholar 

  14. M. Moret, R. Zallen, R. Newnham, Infrared activity in the Aurivillius layered ferroelectric SrBi2Ta2O9. Phys. Rev. B 57, 5715–5723 (1998)

    Article  Google Scholar 

  15. P. Mohanapriya, R. Pradeepkumar, N.V. Jaya, T.S. Natarajan, Magnetic and optical properties of electrospun hollow nanofibers of SnO2 doped with Ce-ion. Appl. Phys. Lett. 105, 022406 (2014)

    Article  Google Scholar 

  16. W. Li, A. Thirumurugan, P.T. Barton, Z. Lin, S. Henke, H.H.M. Yeung, M.T. Wharmby, E.G. Bithell, C.J. Howard, A.K. Cheetham, Mechanical tunability via hydrogen bonding in metal–organic frameworks with the perovskite architecture. J. Am. Chem. Soc. 136, 7801–7804 (2014)

    Article  Google Scholar 

  17. L.J. Burcham, J. Datka, I.E. Wachs, In-situ Vibrational spectroscopy studies of supported niobium oxide catalysts. J. Phys. Chem. B 103, 6015–6024 (1999)

    Article  Google Scholar 

  18. J. Coates. Interpretation of infrared spectra: a practical approach. Encycl. Anal. Chem. 1–23 (2006)

  19. M.J. Forbess, S. Seraji, Y. Wu, C.P. Nguyen, G.Z. Cao, Dielectric properties of layered perovskite Sr1-x AxBi2Nb2O9 ferroelectrics (A = La, Ca and x = 0.0,0.1). Appl. Phys. Lett. 76, 2934–2936 (2000)

    Article  Google Scholar 

  20. S.N. Kumar, P. Kumar, D.K. Agrawal, Structural, dielectric and ferroelectric properties of SBN ceramics synthesized by microwave reactive sintering technique. Ceram. Int. 38, 5243–5250 (2012)

    Article  Google Scholar 

  21. Y. Wu, M.J. Forbess, S. Seraji, S.J. Limmer, T.P. Chou, G. Cao, Impedance study of SrBi2Ta2O9 and SrBi2 (Ta0.9V0.1)2O9 ferroelectrics. Mater. Sci. Eng. B 86, 70 (2001)

    Article  Google Scholar 

  22. D. Kajewski, Z. Ujma, Electrical properties of SrBi2(Nb0.5Ta0.5)2O9 ceramics. J. Phys. Chem. Solids 71, 24–29 (2010)

    Article  Google Scholar 

  23. J. Zhu, W.-P. Lu, X.-Y. Mao, R. Hui, X.-B. Chen, Study on properties of lanthanum distribution of Bi4-xLaxTi3O12-SrBi4-yLayTi4O15 intergrowth ferroelectrics. Jpn. J. Appl. Phys. 42, 5165–5168 (2003)

    Article  Google Scholar 

  24. I. Coondoo, N. Panwar, A. Tomar, A.K. Jha, S.K. Agarwal, Impedance spectroscopy and conductivity studies in SrBi2(Ta1−xWx)2O9 ferroelectric ceramics. Phys. B 407, 4712–4720 (2012)

    Article  Google Scholar 

  25. K. Sambasiva Rao, D. Madhava Prasad, P. Murali Krishna, B. Hima Bindu, K. Suneetha, Frequency and temperature dependence of electrical properties of barium and gadolinium substituted SrBi2Nb2O9 ceramics. J. Mater. Sci. 42, 7363–7374 (2007)

    Article  Google Scholar 

  26. K. Srinivas, P. Sarah, S.V. Suryanarayana, Impedance spectroscopy study of polycrystalline Bi6 Fe2 Ti3 O18. Bull. Mater. Sci. 26, 247–253 (2003)

    Article  Google Scholar 

  27. N.V. Prasad, V.S. Puli, D.K. Pradhan, S.M. Gupta, G. Prasad, R.S. Katiyar, G.S. Kumar, Impedance and Raman Spectroscopic Studies on La-modified BLSF Ceramics. Ferroelectrics 474, 29–42 (2015)

    Article  Google Scholar 

  28. R. Singh, V. Luthra, R.S. Rawat, R.P. Tandon, Structural, dielectric and piezoelectric properties of SrBi2Nb2O9 and Sr0.8Bi2.2Nb2O9 ceramics. Ceram. Int. 41, 4468–4478 (2015)

    Article  Google Scholar 

  29. M.P. Dasari, K. Sambasiva Rao, P. Murali Krishna, G. Gopala Krishna, Barium strontium bismuth niobate layered perovskites: dielectric, impedance and electrical modulus characteristics. Acta Phys. Pol. A 119, 387–394 (2011)

    Article  Google Scholar 

  30. Y. Wu, M.J. Forbess, S. Seraji, S.J. Limmer, T.P. Chou, C. Nguyen, G. Cao, Doping effect in layer structured SrBi2Nb2O9 ferroelectrics. J. Appl. Phys. 90, 5296–5302 (2001)

    Article  Google Scholar 

  31. P. Wang, L. Yao, M. Wang, W. Wu, XPS and voltammetric studies on La1−xSrxCoO3−δ perovskite oxide electrodes. J. Alloys Compd. 311, 53–56 (2000)

    Article  Google Scholar 

  32. S. Deshmukh, G. Kandasamy, R.K. Upadhyay, G. Bhattacharya, D. Banerjee, D. Maity, M.A. Deshusses, S.S. Roy, Terephthalic acid capped iron oxide nanoparticles for sensitive electrochemical detection of heavy metal ions in water. J. Electroanal. Chem. 788, 91–98 (2017)

    Article  Google Scholar 

  33. Y. Zheng, F. Duan, J. Wu, L. Liu, M. Chen, Y. Xie, Enhanced photocatalytic activity of bismuth molybdates with the preferentially exposed 0 1 0 surface under visible light irradiation. J. Mol. Catal. A 303, 9–14 (2009)

    Article  Google Scholar 

  34. M. Zhang, C. Shao, P. Zhang, C. Su, X. Zhang, P. Liang, Y. Sun, Y. Liu, Bi2MoO6 microtubes: controlled fabrication by using electrospun polyacrylonitrile microfibers as template and their enhanced visible light photocatalytic activity. J. Hazard. Mater. 225–226, 155–163 (2012)

    Article  Google Scholar 

  35. J.H. Kim, K.T. Hwang, U.S. Kim, Y.M. Kang, Photocatalytic characteristics of immobilized SrBi2Nb2O9 film for degradation of organic pollutants. Ceram. Int. 38, 3901–3906 (2012)

    Article  Google Scholar 

  36. S. Yang, W. Fu, Z. Zhang, H. Chen, C.-Z. Li, Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J. Mater. Chem. A 5, 11462 (2017)

    Article  Google Scholar 

  37. Y. Bai, S. Xiao, C. Hu, T. Zhang, X. Meng, Q. Li, Y. Yang, K.S. Wong, H. Chen, S. Yang, A pure and stable intermediate phase is key to growing aligned and vertically monolithic perovskite crystals for efficient PIN planar perovskite solar cells with high processibility and stability. Nano Energy 34, 58 (2017)

    Article  Google Scholar 

  38. N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, A. Petrozza, L.M. Herz, H.J. Snaith, Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the contributions of Dr. S. Amirthpandian (IGCAR-Kalapakkam) for providing HRTEM-EDS data. Authors also deeply acknowledge the contribution of Dr. S. S. Roy (SNU) for providing us cyclic voltammetry data and helping to prepare result analysis. One of the authors, Anurag Pritam, also acknowledges the gratitude towards Shiv Nadar Foundation for providing research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaibhav Shrivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pritam, A., Shrivastava, V. Hole/electron transport layers in tin-doped SBLN nano materials for hybrid solar cell applications. J Mater Sci: Mater Electron 30, 11054–11062 (2019). https://doi.org/10.1007/s10854-019-01447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01447-1

Navigation