Skip to main content
Log in

Effect of Pd concentration on the structural, morphological and photodiode properties of TiO2 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, intrinsic and doped TiO2 nanoparticles with different Palladium (Pd) concentrations were successfully synthesized via solvothermal method. The structural, morphological and optical properties of the as-synthesized nanoparticles are investigated. Photodiode properties of the as-synthesized nanoparticles based spin coated films are also investigated. A p-n and p-i-n heterojunction structures are fabricated on ITO coated glass and studied for small (± 5 V) bias voltage. From the IV characterization, responsivity, sensitivity, external quantum efficiency and switch current ratio is evaluated for both the heterostructures. Results showed that the proposed p-i-n photodiode attain good stability and quick response as compared to the conventional p-n photodiode. Hall measurement confirmed that heavily Pd doped TiO2 nanoparticles is an efficient p-type material for fabrication of thin film photo-devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.J. Mayo, Synthesis and applications of nanocrystalline ceramics. Mater. Des. 14, 323–329 (1993)

    Article  CAS  Google Scholar 

  2. R. Suresh, V. Ponnuswamy, C. Sankar, M. Manickama, R. Mariappan, Influence of Co concentration on the structural, optical, morphological and photo-diode properties of cerium oxide thin films. Ceram. Int. 42, 12715–12725 (2016)

    Article  CAS  Google Scholar 

  3. M.H. Bazargan, M. Malekshahi Byranvand, A. Nemati Kharat, Preparation and characterization of low temperature sintering nanocrystalline TiO2 prepared via the sol-gel method using titanium(IV) butoxide applicable to flexible dye sensitized solar cells. Int. J. Mat. Res. 103, 347–351 (2012)

    Article  CAS  Google Scholar 

  4. Z.L. Wang, W. Wu, Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angewandte Chemie. 51, 2–24 (2012)

    Article  Google Scholar 

  5. R.K. Wahi, Y. Liu, J.C. Falkner, V.L. Colvin, Solvothermal synthesis and characterization of anatase TiO2 nanocrystals with ultrahigh surface area. J. Coll. Int. Sci. 302, 530–536 (2006)

    Article  CAS  Google Scholar 

  6. M. Andersson, L. Oesterlund, S. Ljungstroem, A. Palmqvist, Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol A. J. Phys. Chem. B 106, 10674–10679 (2002)

    Article  CAS  Google Scholar 

  7. P.S. Shinde, C.H. Bhosale, Properties of chemical vapour deposited nanocrystalline TiO2 thin films and their use in dye-sensitized solar cells. J. Anal. Appl. Pyrolysis 82, 83–88 (2008)

    Article  CAS  Google Scholar 

  8. W.H. Ryu, C.J. Park, H.S. Kwon, Synthesis of highly ordered TiO2 nanotube in malonic acid solution by anodization. J. Nanosci. Nanotechnol. 8, 5467–5470 (2008)

    Article  CAS  Google Scholar 

  9. W. Tan, J. Chen, X. Zhou, J. Zhang, Y. Lin, X. Li, X. Xiao, Preparation of nanocrystalline TiO2 thin film at low temperature and its application in dye-sensitized solar cell. J. Solid State Electrochem. 13, 651–656 (2009)

    Article  CAS  Google Scholar 

  10. H. Arami, M. Mazloumi, R. Khalifehzadeh, S.K. Sadrnezhaad, Sonochemical preparation of TiO2 nanoparticles. Mater. Lett. 61, 4559–4561 (2007)

    Article  CAS  Google Scholar 

  11. A.B. Corradi, F. Bondioli, B. Focher, A.M. Ferrari, C. Grippo, E. Mariani, C. Villa, Conventional and microwave-hydrothermal synthesis of TiO2 nanopowders. J. Am. Ceram. Soc. 88, 2639–2641 (2005)

    Article  CAS  Google Scholar 

  12. J.A. Darr, J. Zhang, N.M. Makwana, X. Weng, Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chem. Rev. 117, 11125–11238 (2017)

    Article  CAS  Google Scholar 

  13. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  CAS  Google Scholar 

  14. R.M. Piticescu, R.R. Piticescu, D. Taloi, V. Badilita, Hydrothermal synthesis of ceramic nanomaterials for functional applications. Nanotechnol. 14, 312–317 (2003)

    Article  CAS  Google Scholar 

  15. P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki, TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale. 2, 45–59 (2010)

    Article  CAS  Google Scholar 

  16. Y. Wang, Y. He, Q. Lai, M. Fan, Review of the progress in preparing nano TiO2: an important environmental engineering material. J. Environ. Sci. 26, 2139–2177 (2014)

    Article  Google Scholar 

  17. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature. 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  18. X. Wang, M. Fujimaki, K. Awazu, Photonic crystal structures in titanium dioxide (TiO2) and their optimal design. Opt. Express 13, 1486–1497 (2005)

    Article  CAS  Google Scholar 

  19. G. Meacock, K.D.A. Taylor, M.J. Knowles, A. Himonides, The improved whitening of minced cod flesh using dispersed titanium dioxide. J. Sci. Food. Agric. 73, 221–225 (1997)

    Article  CAS  Google Scholar 

  20. H.M. Kim, T. Kokubo, F. Miyaji, T. Nakamura, Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J. Biomed. Mater. Res. 32, 409–417 (1996)

    Article  CAS  Google Scholar 

  21. B. Bharti, S. Kumar, H.N. Lee, R. Kumar, Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep. 6, 32355 (2016)

    Article  CAS  Google Scholar 

  22. R. Acharya, B. Naik, K. Parida, Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction. Beilstein J. Nanotechnol. 9, 1448–1470 (2018)

    Article  CAS  Google Scholar 

  23. P. Sanjay, K. Deepa, J. Madhavan, S. Senthil, Performance of TiO2 based dye-sensitized solar cells fabricated with dye extracted from leaves of Peltophorum pterocarpum and Acalypha amentacea as sensitizer. Mater. Lett. 219, 158–162 (2018)

    Article  CAS  Google Scholar 

  24. S. Arya, P.K. Lehana, S.B. Rana, Synthesis of zinc oxide nanoparticles and their morphological, optical, and electrical characterizations. J. Electron. Mater. 46, 4604–4611 (2017)

    Article  CAS  Google Scholar 

  25. C.L. Yeh, S.H. Yeh, H.K. Ma, Flame synthesis of titania particles from titanium tetraisopropoxide in premixed flames. Powder Technol. 145, 1–9 (2004)

    Article  CAS  Google Scholar 

  26. A.N. Banerjee, N. Hamnabard, S.W. Joo, A comparative study of the effect of Pd-doping on the structural, optical, and photocatalytic properties of sol-gel derived anatase TiO2 nanoparticles. Ceram. Int. 42, 12010–12026 (2016)

    Article  CAS  Google Scholar 

  27. S. Arya, A. Sharma, B. Singh, M. Riyas, P. Bandhoria, M. Aatif, V. Gupta, Sol-gel synthesis of Cu-doped p-CdS nanoparticles and their analysis as p-CdS/n-ZnO thin film photodiode. Opt. Mater. 79, 115–119 (2018)

    Article  CAS  Google Scholar 

  28. E. Grabowska, M. Marchelek, T. Klimczuk, G. Trykowski, A.Z. Medynska, Noble metal modified TiO2 microspheres: Surface properties and photocatalytic activity under UV–vis and visible light. J. Mol. Catal. A: Chem. 423, 191–206 (2016)

    Article  CAS  Google Scholar 

  29. F. Chekin, S. Bagheri, S.B.A. Hamid, Synthesis and spectroscopic characterization of palladium-doped titanium dioxide catalyst. Bull. Mater. Sci. 38, 461–465 (2015)

    Article  CAS  Google Scholar 

  30. J.C.S. Wu, C.H. Chen, A. Visible-Light, Response vanadium-doped titania nanocatalyst by sol-gel method. J. Photochem. Photobiol. A 163, 509–515 (2004)

    Article  CAS  Google Scholar 

  31. S. Arya, M. Riyas, A. Sharma, B. Singh, P. Prerna, S. Bandhoria, Khan, V. Bharti, Electrochemical detection of ammonia solution using tin oxide nanoparticles synthesized via sol–gel route. Appl. Phys. A 124, 538 (2018)

    Article  Google Scholar 

  32. S. Sakthivela, M.V. Shankarb, M. Palanichamyb, B. Arabindoob, D.W. Bahnemanna, V. Murugesanb, Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res. 38, 3001–3008 (2004)

    Article  Google Scholar 

  33. B.S. Kwak, J. Chae, J. Kim, M. Kang, Enhanced hydrogen production from methanol/water photo-splitting in TiO2 including Pd component. Bull. Korean Chem. Soc. 30, 1047–1053 (2009)

    Article  CAS  Google Scholar 

  34. A.B. Yadav, A. Pandey, D. Somvanshi, S. Jit, Sol-gel-based highly sensitive Pd/n-ZnO thin film/n-Si schottky ultraviolet photodiodes. IEEE Trans. Electron Devices 62, 1879–1884 (2015)

    Article  CAS  Google Scholar 

  35. V. Qaradaghi, I. Mejia, M.Q. Lopez, Fabrication and analysis of thin film CdTe/CdS based avalanche photodiodes. IEEE Electron Device Lett. 38, 489–492 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Engineering Research Board (SERB), India (File No. EEQ/2016/000119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Arya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Arya, S., Sharma, A. et al. Effect of Pd concentration on the structural, morphological and photodiode properties of TiO2 nanoparticles. J Mater Sci: Mater Electron 31, 65–74 (2020). https://doi.org/10.1007/s10854-019-01095-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01095-5

Navigation