Skip to main content
Log in

Effects of Ag on the microstructure and shear strength of rapidly solidified Sn–58Bi solder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of Ag on the microstructure of solder matrix and shear strength of solder joint were studied. The Sn–58Bi solder ribbons were prepared by rapid solidification. The eutectic structure (β-Sn + Bi) was significantly refined by adding 1.0 wt% Ag to the Sn–58Bi solder. The refinement mechanism was investigated with a differential scanning calorimetry. The result showed that the addition of Ag reduced the nucleation undercooling of structure, which promoted the nucleation. In addition, the metastable phase particles of Ag6.7Sn formed during rapid solidification were dispersed at the Bi phase boundary, which hindered the growth of Bi phase. With 1.0 wt% Ag, the shear strength of Sn–58Bi solder joint increased by 13.3%. The Bi phase was found to be reduced in size and passivated by adding Ag, and it resulted in more phase boundaries and hindered the crack propagation during the stretching process. Moreover, the second phase particles of Ag3Sn formed after brazing and remelting had dispersion strengthening effect. However, the addition of Ag did not change the fracture mode of rapidly solidified Sn–58Bi solder, which was still intergranular brittle fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T.L. Yang, J.Y. Wu, C.C. Li, S. Yang, C.R. Kao, J. Alloys Compd. 647, 681–685 (2015)

    Article  Google Scholar 

  2. H.Y. Sun, Q. Li, Y.C. Chan, J. Mater. Sci. Mater. Electron. 25(10), 4380–4390 (2014)

    Article  Google Scholar 

  3. Q. Zhang, H. Zou, Z.F. Zhang, J. Mater. Res. 25(2), 303–314 (2010)

    Article  Google Scholar 

  4. L.Z. Yang, W. Zhou, Y. Ma, X.Z. Li, Y.H. Liang, W.Q. Cui, P. Wu, Mater. Sci. Eng. A 667, 368–375 (2016)

    Article  Google Scholar 

  5. T.H. Chuang, H.F. Wu, J. Electron. Mater. 40(1), 71–77 (2011)

    Article  Google Scholar 

  6. X. Chen, F. Xue, J. Zhou, Y. Yao, J. Alloys Compd. 633, 377–383 (2015)

    Article  Google Scholar 

  7. T. Hu, Y. Li, Y.C. Chan, F. W, Microelectron. Reliab. 55(8), 1226–1233 (2015)

    Article  Google Scholar 

  8. L. Yang, J. Dai, Y.C. Zhang, Y.F. Jing, J.G. Ge, H.X. Liu, J. Electron. Mater. 44(7), 2473–2478 (2015)

    Article  Google Scholar 

  9. L. Yang, W. Zhou, Y. Liang, W. Cui, P. Wu, Mater. Sci. Eng. A 642, 7–15 (2015)

    Article  Google Scholar 

  10. D. Ma, P. Wu, J. Alloys Compd. 671, 127–136 (2016)

    Article  Google Scholar 

  11. Y. Ma, X. Li, W. Zhou, L. Yang, P. Wu, Mater. Des. 113, 264–272 (2017)

    Article  Google Scholar 

  12. Y.G. Lee, J.G. Park, C.W. Lee, J.P. Jung, Met. Mater. Int. 17(1), 117–121 (2011)

    Article  Google Scholar 

  13. K. Liang, X.Z. Tang, L.J. Yu, N. Wang, W.C. Hu, J. Alloys Compd. 509, 9836–9841 (2011)

    Article  Google Scholar 

  14. D. Bhardwaj, H. Soda, A. Mclean, Mater. Charact. 61(9), 882–893 (2010)

    Article  Google Scholar 

  15. J. Cai, G.C. Ma, Z. Liu, H.F. Zhang, A.M. Wang, Z.Q. Hu, Mater. Sci. Eng. A 456(1), 364–367 (2007)

    Article  Google Scholar 

  16. C.L. Xu, H.Y. Wang, F. Qiu, Y.F. Yang, Q.C. Jiang, Mater. Sci. Eng. A 417(1), 275–280 (2006)

    Article  Google Scholar 

  17. Z.M. Zhou, Y.P. Wang, J. Gao, M. Kolbe, Mater. Sci. Eng. A 398(1–2), 318–322 (2005)

    Article  Google Scholar 

  18. R.M. Shalaby, J. Alloys Compd. 505(1), 113–117 (2010)

    Article  Google Scholar 

  19. K. Shibuya, F. Kogiku, M. Yukumoto, S. Miyake, M. Ozawa, T. Kan, Mater. Sci. Eng. 98(4), 25–28 (1988)

    Article  Google Scholar 

  20. W.R. Myung, M.K. Ko, Y. Kim, S.B. Jung, J. Mater. Sci. Mater. Electron. 26(11), 8707–8713 (2015)

    Article  Google Scholar 

  21. Y. Li, Y.C. Chan, J. Alloys Compd. 645, 566–576 (2015)

    Article  Google Scholar 

  22. B.L. Silva, V.C.E.D. Silva, A. Garcia, J.E. Spinelli, J. Electron. Mater. 46(3), 1754–1769 (2017)

    Article  Google Scholar 

  23. A.A. El-Daly, W.M. Desoky, A.F. Saad, N.A. Mansor, N.A. Mansor, H.M. Abd-Elmoniem, H. Hashem, Mater. Des. 80, 152–162 (2015)

    Article  Google Scholar 

  24. X.X. Tu, D.Q. Yi, J. Wu, B. Wang, J. Alloys Compd. 698, 317–328 (2017)

    Article  Google Scholar 

  25. J. Shen, Y. Pu, H. Yin, D. Luo, J. Chen, J. Alloys Compd. 614, 63–70 (2014)

    Article  Google Scholar 

  26. Z.Q. Cui, Metallography and Heat Treatment (China Machine Press, Beijing, 2000), pp. 178–206

    Google Scholar 

  27. D.S. Balint, V.S. Deshpande, Int. J. Plast. 24(12), 2149–2172 (2008)

    Article  Google Scholar 

  28. X. Deng, N. Chawla, K.K. Chawla, M. Koopman, Acta. Mater. 52(14), 4291–4303 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to the National Natural Science Foundation of China (Grant No. 51475345).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianjie Song.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Song, T., Xiong, W. et al. Effects of Ag on the microstructure and shear strength of rapidly solidified Sn–58Bi solder. J Mater Sci: Mater Electron 30, 6701–6707 (2019). https://doi.org/10.1007/s10854-019-00981-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00981-2

Navigation