Skip to main content
Log in

Influence of Mg doping in magnetic properties of NiO nanoparticles and its electrical applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mg doped NiO nanoparticles MgxNi1−xO (x = 0, 0.1, 0.2, 0.3, 0.4) have been synthesized using sol–gel method. Their structure and morphology of the sample were analyzed using X-ray diffractometer (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM) with energy dispersive X-ray spectrum (EDX). From the XRD analysis, it is observed that the sample can have FCC structure with a particle size of 22 nm. Functional group analysis was carried out using Fourier transform infrared spectroscopy (FTIR) and Ultraviolet visible spectrometer. The obtained band gap was 4.254 eV. Photoluminescence (PL) emission spectra showed blue emission with a strong band at 345 nm. SEM and TEM images confirmed the spherical morphology and high crystalline nature of the samples. EDX spectrum showed the purity of the samples. The magnetic properties of the samples were analyzed using the vibrating sample magnetometer (VSM). 0.3 %Mg doped samples showed room temperature ferromagnetism with higher saturation magnetization. The synthesized nanoparticles were used further for the fabrication of low cost counter electrode for dye-sensitized solar cells (DSSCs). A thin film of pure and Mg doped NiO nanoparticles deposited on Fluorine tin oxide (FTO) coated glass substrate serves as an efficient plate to increase the number of holes and induced the electrocatalytic activity and yield the efficiency of 2.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. O’regan, M. Grätzel, Nature 353, 737–740 (1991)

    Article  Google Scholar 

  2. H. Phuong, Q. Le, K.-S. Ahn, R. Cheruku, J.H. Kim, j.synthmet (2016) https://doi.org/10.1016/j.synthmet.2016.04.006

    Google Scholar 

  3. G. Jiawei, K. Sumathy, Q. Qiao, Z. Zhou, j.rser (2017) https://doi.org/10.1016/j.rser.2016.09.097

    Google Scholar 

  4. R. Li Li, G. Chen, G. Jing, F. Zhang, S. Wu, Chen, Appl. Surf. Sci. 256, 4533–4537 (2010)

    Article  Google Scholar 

  5. H. Sato, T. Minami, S. Takata, T. Yamada, Thin Solid Films 236, 27 (1993)

    Article  Google Scholar 

  6. T.V. Thi, A.K. Rai, J. Gim, J. Kim, J. Power Sour. (2015) https://doi.org/10.1016/j.jpowsour.2015.05.029

    Google Scholar 

  7. Y.J. Mai, J.P. Tu, X.H. Xia, C.D. Gu, X.L. Wang, J. Power Sour. (2011) https://doi.org/10.1016/j.jpowsour.2011.03.089

    Google Scholar 

  8. T. Monika, M. Tyagi, V. Gupta, Biosens. Bioelectron. (2013) https://doi.org/10.1016/j.bios.2012.07.062

    Google Scholar 

  9. J.A. Dirksen, K. Duval, T.A. Ring, Sens. B. Actuat. Chem. (2001) https://doi.org/10.1016/S0925-4005(01)00898-X

    Google Scholar 

  10. M. Guziewicz, P. Klata, J. Grochowski, K. Golaszewska, E. Kaminska, J.Z. Domagala, B.A. Witkowski, M. Kandyla, Ch Chatzimanolis, M. Kompitsas, A. Piotrowska, Proc. Eng. (2012) https://doi.org/10.1016/j.proeng.2012.09.255

    Google Scholar 

  11. G. Bharathy, P. Raji, J. Mater. Sci. Mater. Electron. (2017) https://doi.org/10.1007/s10854-017-7730-8

    Google Scholar 

  12. S. Chatterjee, R. Maiti, M. Miah, S.K. Saha, D. Chakravorty, acsomega (2017) https://doi.org/10.1021/acsomega.6b00384

    Google Scholar 

  13. D. Dini, Y. Halpin, J.G. Vos, E.A. Gibson, Coord. Chem. Rev. (2015) https://doi.org/10.1016/j.ccr.2015.03.020

    Google Scholar 

  14. P. Tippayawat, N. Phromviyo, P. Boueroy, A. Chompoosor, PeerJ (2016) https://doi.org/10.7717/peerj.2589

    Google Scholar 

  15. F. Liu, X. Yang, Z. Qiao, L. Zhang, B. Cao, G. Duan, Electrochim. Acta (2017) https://doi.org/10.1016/j.electacta.2017.11.011

    Google Scholar 

  16. G. Allaedini, P. Aminayi, S.M. Tasirin. AIP Adv. (2015) https://doi.org/10.1063/1.4927508

    Google Scholar 

  17. S.K. Matsumura, A. Ohnishi, M. Sasaki, T. Kakuta, M. Kurihara, Jpn. J. Appl. Phys (2007) https://doi.org/10.1143/JJAP.46.1432

    Google Scholar 

  18. International Scholarly Research Network, I.S.R.N. Nanomater. (2012) https://doi.org/10.5402/2012/865373

    Google Scholar 

  19. C. Lin, S.A. Al-Muhtaseb, J.A. Ritter J. Sol–Gel. Sci. Technol. (2003) https://doi.org/10.1023/a:1025653607374

    Google Scholar 

  20. G. Bharathy, P. Raji, j.physb (2017) https://doi.org/10.1016/j.physb.2017.10.106

    Google Scholar 

  21. R.A. Soomro, Z.H. Ibupoto, M.I. Abro, M. Willander, Sens. Actuat. B (2015) https://doi.org/10.1016/j.snb.2014.12.050

    Google Scholar 

  22. M.N. Hosny, j.poly (2011) https://doi.org/10.1016/j.poly.2010.11.020

    Google Scholar 

  23. S.M. Meybodi, S.A. Hosseini, M. Rezaee, S.K. Sadrnezhaad, D. Mohammadyani, Ultrason. Sonochem. 19, 841–845 (2012)

    Article  Google Scholar 

  24. K. Anandan, V. Rajendran, j.mssp (2011) https://doi.org/10.1016/j.mssp.2011.01.001

    Google Scholar 

  25. B. Akbari, M. Pirhadi Tavandashti, M. Zandrahimi, ijmse spring 8, 2 (2011)

    Google Scholar 

  26. K. Anandan, V. Rajendran, j.mseb (2015) https://doi.org/10.1016/j.mseb.2015.04.015

    Google Scholar 

  27. I. Hotovy, J. Huran, L. Speiss, S. Hascik, V. Rehacek, Sens. Actuat. B 57, 147–152 (1999)

    Article  Google Scholar 

  28. P. Ho, L.Q. Bao, K.-S. Ahn, R. Cheruku, J.H. Kim, Synth. Met. 217, 314–321 (2016)

    Article  Google Scholar 

  29. Y. Yu, X. Li, Z. Shen, X. Zhang, P. Liu, Y. Gao, T. Jiang, J. Hua, J. Colloid Interface Sci. (2016), https://doi.org/10.1016/j.jcis.2016.11.037

    Google Scholar 

  30. P.K. Priyanka, P. Sonar, D.S. Dalal, j.rser (2017). https://doi.org/10.1016/j.rser.2017.05.011

    Google Scholar 

  31. M. Ashfaq, M. Saleem, L.F. Ahmad, R. Raza, M.N. Akhtar, S.U. Rehman, j.materresbull https://doi.org/10.1016/j.materresbull.2017.03.028

  32. P. Ho, L.Q. Bao, K.-S. Ahn, R. Cheruku, J.H. Kim, Synth. Met. (2016) https://doi.org/10.1016/j.synthmet.2016.04.006

    Google Scholar 

  33. M. Tadic, M. Panjan, D. Markovic, jmatlet (2010) https://doi.org/10.1016/j.matlet.2010.07.006

    Google Scholar 

  34. M. Tadic, M. Panjan, D. Markovic, B. Stanojevic, D. Jovanovic, I. Milosevic, V. Spasojevic, j.jallcom (2014) https://doi.org/10.1016/j.jallcom.2012.10.166

    Google Scholar 

  35. S. Anandhan, G. George, j.mssp (2015) https://doi.org/10.1016/j.mssp.2015.01.003

    Google Scholar 

  36. M. Modak, N. Pal, S. Mondal, M. Sardar, S. Banerjee, j.jmmm (2018) https://doi.org/10.1016/j.jmmm.2017.06.064

    Google Scholar 

  37. X. Luo, L.T. Tseng, S. Li, J.B. Yi, j.mssp (2015) https://doi.org/10.1016/j.mssp.2014.10.009-232

    Google Scholar 

  38. V. Helan, J.Joseph Prince, N.A. Al-Dhab, M.V. Arasu, A. Ayeshamariam, G. Madhumitha, S.M. Roopan, M. Jayachandran, j.rinp (2016) https://doi.org/10.1016/j.rinp.2016.10.005-718

    Google Scholar 

  39. S.M. Yakout, J. Mater. Sci. Mater. Electron. (2017) https://doi.org/10.1007/s10854-017-7295-6 doi.org/

    Google Scholar 

  40. Y.-D. Luo, Y.-H. Lin, X. Zhang, D. Liu, Y. Shen, C.-W. Nan, J. Nanomater. (2013) https://doi.org/10.1155/2013/252593

    Google Scholar 

  41. M. Tadic, D. Nikolic, M. Panjan, G.R. Blake, j.jallcom (2015) https://doi.org/10.1016/j.jallcom.2015.06.027

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raji Palanimuthu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindarajan, B., Palanimuthu, R. & Manikandan, K.M. Influence of Mg doping in magnetic properties of NiO nanoparticles and its electrical applications. J Mater Sci: Mater Electron 30, 6519–6527 (2019). https://doi.org/10.1007/s10854-019-00957-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00957-2

Navigation