Skip to main content
Log in

Field emission investigations of solvothermal synthesized and soaked rutile-TiO2 nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In present work we report synthesis of rutile-TiO2 by using a simple solvothermal method. The formation of pure single phase rutile-TiO2 has been confirmed by X-ray diffraction (XRD) and Raman spectroscopy analysis. The XRD analysis revealed that as-prepared and soaked-TiO2 has pure rutile phase with tetragonal crystal structure. The field emission scanning electron microscopy and high resolution transmission electron microscopy analysis shows that as-prepared TiO2 has nano-rods like morphology whereas soaked-TiO2 has nano-flowers like morphology with atomically sharp edges. The UV–Visible spectroscopy analysis showed that as-prepared and soaked rutile-TiO2 nano-structures have absorption edge in the visible range and having band gap of ~ 3.58 eV. The field emission (FE) properties of as-prepared and soaked rutile-TiO2 nano-structures were investigated and it was observed that as-prepared and soaked rutile-TiO2 display excellent FE properties with low turn-on field (~ 4.8 V/µm for 10 µA/cm2), maximum current density [~ 444 µA/cm2 (as-prepared) and 508 µA/cm2 (soaked)] and superior current stability (~ 3 h for ~ 1 µA). The obtained results show that the rutile-TiO2 nanostructures can be useful for practical applications in vacuum nano/microelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Guo, T. Liu, L. Huang, Mater. Lett. 65, 3384 (2011)

    Article  Google Scholar 

  2. X. Fang, J. Yan, L. Hu, H. Liu, P. Lee, Adv. Funct. Mater. 22, 1613 (2012)

    Article  Google Scholar 

  3. L. You, Y. Sun, J. Ma, Y. Guan, Sens. Actuators B 157, 401 (2011)

    Article  Google Scholar 

  4. L. Li, N. Koshizaki, J. Mater. Chem. 20, 2972–2978 (2010)

    Google Scholar 

  5. B. Liu, E. Aydil, J. Am. Chem. Soc. 131, 3985 (2009)

    Article  Google Scholar 

  6. V. Subramanian, E.W. Eduardo, V.K. Prashant, J. Am. Chem. Soc. 126, 4943 (2004)

    Article  Google Scholar 

  7. T. Kandiel, A. Feldhoff, L. Robben, R. Dillert, D. Bahnemann, Chem. Mater. 22, 2050 (2010)

    Article  Google Scholar 

  8. R. Patil, R. Devan, Y. Liou, Y. Ma, Sol. Energy Mater. Sol. Cells 147, 240 (2016)

    Article  Google Scholar 

  9. R. Devan, Y. Ma, R. Patil, L. Schmidt-Mende, RSC Adv. 6, 62218 (2016)

    Article  Google Scholar 

  10. C. Kim, R. Buonsanti, R. Yaylian, D. Milliron, J. Cabana, Adv. Energy Mater. 3, 1286 (2013)

    Article  Google Scholar 

  11. J. Gong, Y. Li, Z. Hu, Z. Zhou, J. Phys. Chem. C .114, 9970 (2010)

    Article  Google Scholar 

  12. T. Ochiai, A. Fujishima, J. Photochem. Photobiol. C 13, 247 (2012)

    Article  Google Scholar 

  13. Y. Lu, H. Yu, S. Chen, X. Quan, H. Zhao, Environ. Sci. Technol. 46, 1724 (2012)

    Article  Google Scholar 

  14. T. Zheng, Z. Tian, B. Su, Z. Lei, Ind. Eng. Chem. Res. 51, 1391 (2012)

    Article  Google Scholar 

  15. P. Singh, N. Jadhav, Int. J. Electroact. Mater. 3, 1–5 (2015)

    Google Scholar 

  16. G. Wilson, A. Matijasevich, D. Mitchell, J. Schulz, G. Will, Langmuir 22, 2016 (2006)

    Article  Google Scholar 

  17. N. Khatun, S. Tiwari, C. Vinod, C. Tseng, S. Liu, S. Biring, S. Sen, J. Appl. Phys. 123, 245702 (2018)

    Article  Google Scholar 

  18. Z. Ding, X. Hu, G. Lu, P. Yue, Langmuir. 16, 6216 (2000)

    Article  Google Scholar 

  19. S. Muduli, W. Lee, V. Dhas, Appl. Mater. Interfaces 1(9), 2030 (2009)

    Article  Google Scholar 

  20. R. Almeida, A. Marques, J. Mater. Sci. Mater. Electron. 20, 307 (2009)

    Article  Google Scholar 

  21. H. Kim, J. Lee, N. Yantara, P. Boix, S. Kulkarni, S. Mhaisalkar, M. Gratzel, N. Park, Nano Lett. 13, 2412 (2013)

    Article  Google Scholar 

  22. W. Junga, N. Kwaka, T. Hwanga, K. Yi, Appl. Surf. Sci. 261, 343 (2012)

    Article  Google Scholar 

  23. Y. Zhu, H. Li, Y. Koltypin, Y.R. Hacohen, A. Gedanken, Chem. Commun. 24, 2616–2617 (2001)

    Google Scholar 

  24. G. Wang, G. Li, Eur. J. Phys. D 24, 355 (2003)

    Article  Google Scholar 

  25. A. Liao, C. Wang, J. Chen, X. Zhang, Y. Li, J. Wang, Mater. Res. Bull. 70, 988 (2015)

    Article  Google Scholar 

  26. N. Asim, S. Ahmadi, M. Alghoul, F. Hammadi, K. Saeedfar, K. Sopian, Int. J. Photoenergy 21, 518156 (2014)

    Google Scholar 

  27. W. Li, C. Ni, H. Lin, C. Huang, S. Shah, J. Appl. Phys. 96, 6663 (2004)

    Article  Google Scholar 

  28. N. Jagtap, M. Bhagwat, P. Awati, V. Ramaswamy, Thermochim. Acta 37, 427 (2005)

    Google Scholar 

  29. D. Hanaor, C. Sorrell, J. Mater. Sci. 46, 855 (2011)

    Article  Google Scholar 

  30. M. Zavala, S. Morales, M. Santos, Heliyon, 3,00456 (2017)

    Google Scholar 

  31. C. Brinker, G. Scherer, S.-G. Science, The physics and chemistry of Sol–Gel processing (Academic Press Inc., USA, 1990)

    Google Scholar 

  32. B. Wang, D. Xue, Y. Shi, F. Xue, Titania 1D nanostructured materials: synthesis, properties and applications, In Nanorods, nanotubes and nanomaterials research progress, ed. by W. Prescott, A. Schwartz (New Nova Science Publishers Inc., New York, 2008), pp. 163–201

    Google Scholar 

  33. Y. Wang, G. Hu, X. Duan, H. Sun, Q. Xue, Chem. Phy. Lett. 365, 427 (2002)

    Article  Google Scholar 

  34. R. Shannon, J. Pask, J. Am. Ceram. Soc. 48, 391 (1965)

    Article  Google Scholar 

  35. M. Finnegan, H. Zhang, J. Banfield, Chem. Mater. 20, 3443 (2008)

    Article  Google Scholar 

  36. F. Meldrum, H. Colfen, Chem. Rev. 108, 4332 (2008)

    Article  Google Scholar 

  37. M. Wu, G. Lin, D. Chen, G. Wang, D. He, S. Feng, R. Xu, Chem. Mater. 14, 1974 (2002)

    Article  Google Scholar 

  38. B. Cullity, S. Stock, Elements of X-ray Diffraction, 3rd ed. (Princeton Hall, New Jersey, 2001)

    Google Scholar 

  39. Y. Xing, S. Wang, B. Fang, G. Song, D. Wilkinson, S. Zhang, J. Power Sources 385, 10 (2018)

    Article  Google Scholar 

  40. Y. Yoon, J. Park, Nanotechnology 29, 165705 (2018)

    Article  Google Scholar 

  41. G. Chen, J. Chen, Z. Song, C. Srinivasakannan, J. Peng, J. Alloys Compd. 585, 75 (2014)

    Article  Google Scholar 

  42. J. Yan, G. Wu, N. Guan, L. Li, Z. Li, X. Cao, Phys.Chem. Chem. Phys. 15, 10978 (2013)

    Article  Google Scholar 

  43. Y. Baoa, Q. Kang, C. Jian, Z. Ma, Mater. Lett. 214, 272 (2018)

    Article  Google Scholar 

  44. M. Patel, A. Chavada, I. Mukhopadhyay, J. Kim, A. Ray, Nanoscale 8, 2293 (2016)

    Article  Google Scholar 

  45. N. Khatun, P. Anita, D. Rajput, S. Bhattacharya, S. Jha, S. Brining, S. Sen, Ceram. Int. 43, 14128 (2017)

    Article  Google Scholar 

  46. R. Devan, Y. Ma, M. More, R. Khare, V. Antad, R. Patil, V. Thakare, R. Dhayal, L. Mendeg, RSC Adv. 6, 98722 (2016)

    Article  Google Scholar 

  47. J. Liang, G.M. Zhang, ACS Appl. Mater. Interfaces 4, 6053 (2012)

    Article  Google Scholar 

  48. G. Rothenberger, D. Fitzmaurice, M. Graetzel, J. Phys. Chem. 96, 5983 (1992)

    Article  Google Scholar 

  49. A. Datta, P. Chavan, F. Sheini, M. More, D. Joag, A. Patra, Cryst. Growth Des. 9, 4157 (2009)

    Article  Google Scholar 

  50. Y. Alivov, S. Molloi, J. Appl. Phys. 108, 024303 (2010)

    Article  Google Scholar 

  51. J. Chen, C. Wang, B. Ma, Y. Li, J. Wang, R. Guo, W. Liu, Thin Solid Films 517, 4390 (2009)

    Article  Google Scholar 

  52. P. Bankar, M. Pawar, A. Pawbake, S. Warule, D. Late, M. More, RSC Adv. 6, 95092 (2016)

    Article  Google Scholar 

  53. P. Chikate, P. Bankar, Y. Ma, S. Patil, M. More, D. Phase, P. Shirage, R. Devan, RSC Adv. 8, 21664 (2018)

    Article  Google Scholar 

  54. M. Choi, Z. Zhang, J. Chen, Z. Deng, K. Yong, RSC Adv. 5, 19470 (2015)

    Article  Google Scholar 

  55. J. Wu, H. Shih, W. Wu, Chem. Phys. Lett. 413, 490 (2005)

    Article  Google Scholar 

  56. G. Liu, F. Li, G. Lu, D. Wang, D. Tang, C. Liu, X. Ma, H. Cheng, Nanotechnology 19, 025606 (2008)

    Article  Google Scholar 

  57. H. Pan, X. Qiu, I. Ivanov, H. Meyer, W. Wang, W. Zhu, M. Paranthaman, Z. Zhang, G. Eres, B. Gu, Appl. Catal. B 93, 90 (2009)

    Article  Google Scholar 

  58. C. Wang, J. Chen, L. Wang, Y. Kang, D. Li, F. Zhou, Thin Solid Films 520, 5036 (2012)

    Article  Google Scholar 

  59. S. Suryawanshi, S. Warule, S. Patil, K. Patil, M. More, ACS Appl. Mater. Interfaces 6, 2018 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Ajinkya Bhorde thankful to Department of Science and Technology (DST), Government of India for INSPIRE Ph. D. fellowship. Ravindra waykar, Shruthi Nair and Subhash Pandharkar are thankful to the and Ministry of New and Renewable Energy (MNRE), Government of India for the financial support under National Renewable Energy Fellowship (NREF) program. Haribhau Borate is thankful to University Grants Commission, New Delhi for financial support under Faculty Improvement Program (FIP) for college teachers. One of the authors Sandesh Jadkar is thankful to University Grants Commission (UPE program), New Delhi and Indo-French Centre for the Promotion of Advanced Research-CEFIPRA, Department of Science and Technology, New Delhi for special financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandesh Jadkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhorde, A., Bhopale, S., Waykar, R. et al. Field emission investigations of solvothermal synthesized and soaked rutile-TiO2 nanostructures. J Mater Sci: Mater Electron 30, 4920–4930 (2019). https://doi.org/10.1007/s10854-019-00787-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00787-2

Navigation