Skip to main content
Log in

Structure analysis and systematical electric properties investigation of PSN–PMN–PT single crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel Pb(Sc1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 (PSN–PMN–PT) single crystal with large size ϕ25 mm × 40 mm was grown by the Bridgman technique. The crystal was cut along [100] orientation with composition of 6PSN–63PMN–31PT, and then its structure and electric properties were investigated systematically. Raman test demonstrates that the crystal is typical relaxor ferroelectrics with perovskite structure. At room temperature, [100]-oriented 6PSN–63PMN–31PT crystal shows the excellent electric properties, such as the dielectric constant εr = 4793, the piezoelectric constant d33 = 1237 pC/N, and the remanent polarization Pr = 34.41 µC/cm2, respectively. It is more important that the large coercive field Ec = 8.17 kV/cm in [100]-oriented 6PSN–63PMN–31PT crystal is almost four times than that of PMN–PT, even higher than that of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 (PIN–PMN–PT) and Pb(Lu1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 (PLN–PMN–PT), indicating its potential application for high-power transducers. With elevating temperature, the [100]-oriented 6PSN–63PMN–31PT crystal shows the large pyroelectric coefficient p = 3.49 × 10−2 C/m2/K at phase transition temperature, and the related figures of merit (FOMs) for current responsivity Fi, for voltage responsivity Fv and for detectivity FD increase from 1.968 × 10−10 m/V, 0.00485 m2/C and 0.59 × 10−5 Pa−1/2 to 1.396 × 10−8 m/V, 0.054 m2/C, and 52.94 × 10−5 Pa−1/2, respectively. Furthermore, the thermal strain at heating process was analyzed for unpoled and poled crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Li, X.F. Long, M. Ye, H.R. Wang, H.T. Huang, X.R. Zeng, S.M. Ke, Ceram. Int. 41, 14427 (2015)

    Article  Google Scholar 

  2. K.K. Rajan, M. Shanthi, W.S. Chang, J. Jin, L.C. Lim, Sens. Actuators A 133, 110 (2007)

    Article  Google Scholar 

  3. A. Dąbkowski, H.A. Dąbkowska, J.E. Greedan, W. Ren, B.K. Mukherjee, J. Cryst. Growth 265, 204 (2004)

    Article  Google Scholar 

  4. L.H. Wang, Z. Xu, Z.R. Li, F. Li, Ferroelectrics 402, 187 (2010)

    Article  Google Scholar 

  5. X. Jiang, F. Tang, J.T. Wang, T.P. Chen, Physica C 365, 678 (2001)

    Article  Google Scholar 

  6. Z.Z. Xi, A.M. Han, P.Y. Fang, W. Long, X.J. Li, Q.Q. Bu, J. Mater. Sci.: Mater. Electron. 27, 4223 (2016)

    Google Scholar 

  7. L.H. Luo, W.P. Li, Y.J. Zhu, J. Wang, Solid State Commun. 149, 978 (2009)

    Article  Google Scholar 

  8. Y.L. Wang, E.W. Sun, W. Song, W.C. Li, R. Zhang, W.W. Cao, J. Alloys Compd. 601, 154 (2014)

    Article  Google Scholar 

  9. Z.J. Wang, X.Z. Li, C. He, Y. Liu, S.J. Han, S.L. Pan, X.F. Long, J. Mater. Sci. 50, 3970 (2015)

    Article  Google Scholar 

  10. R.F. Zhu, W.W. Ji, B.J. Fang, D. Wu, Z.H. Chen, J.N. Ding, X.Y. Zhao, H.S. Luo, Ceram. Int. 43, 6417 (2017)

    Article  Google Scholar 

  11. J. Anthoniappen, C.S. Tu, P.Y. Chen, Y.U. Idzerda, S.J. Chiu, J. Eur. Ceram. Soc. 35, 3495 (2015)

    Article  Google Scholar 

  12. X. Liu, F. Li, J.W. Zhai, B. Shen, P. Li, Y. Zhang, B.H. Liu, Mater. Res. Bull. 97, 215 (2018)

    Article  Google Scholar 

  13. S.J. Zhang, P.W. Rehrig, C. Randall, T.R. Shrout, J. Cryst. Growth 234, 415 (2002)

    Article  Google Scholar 

  14. Y.P. Guo, H.Q. Xu, H.S. Luo, G.S. Xu, Z.W. Yin, J. Cryst. Growth 226, 111 (2001)

    Article  Google Scholar 

  15. Y.H. Bing, Z.G. Ye, J. Cryst. Growth 287, 326 (2006)

    Article  Google Scholar 

  16. X.Z. Li, Z.J. Wang, C. He, Y. Liu, X.F. Long, S.J. Han, S.L. Pan, Mater. Lett. 143, 88 (2015)

    Article  Google Scholar 

  17. J.W. Chen, X.B. Li, X.Y. Zhao, H.W. Zhang, H. Deng, C. Chen, X.A. Wang, B. Ren, W.N. Di, H.S. Luo, J. Cryst. Growth 423, 50 (2015)

    Article  Google Scholar 

  18. Y. Li, Y.X. Tang, J.W. Chen, X.Y. Zhao, L.R. Yang, F.F. Wang, Z. Zeng, H.S. Luo, Appl. Phys. Lett. 112, 172901 (2018)

    Article  Google Scholar 

  19. Y.X. Tang, X.Y. Zhao, X.Q. Feng, W.Q. Jin, H.S. Luo, Appl. Phys. Lett. 86, 082901 (2005)

    Article  Google Scholar 

  20. Y.X. Tang, Z.Y. Shen, X.Y. Zhao, F.F. Wang, W.Z. Shi, D.Z. Sun, Z.Y. Zhou, S.J. Zhang, J. Am. Ceram. Soc. 101, 1592 (2018)

    Article  Google Scholar 

  21. M. Schossig, V. Norkus, G. Gerlach, Infrared Phys. Technol. 63, 35 (2014)

    Article  Google Scholar 

  22. P. Yu, Y.X. Tang, H.S. Luo, J. Electroceram. 24, 1 (2010)

    Article  Google Scholar 

  23. H. Wei, Y.J. Chen, Ceram. Int. 41, 6158 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51472197), the National Basic Research Program of China (973 Program) (Grant No. 2013CB632900), the Shaanxi Key Laboratory Fundament Research Foundation (14JK1333) and Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices (Grant No. 2015SZSJ-59-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengzhe Xi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, A., Xi, Z., Li, X. et al. Structure analysis and systematical electric properties investigation of PSN–PMN–PT single crystal. J Mater Sci: Mater Electron 29, 16004–16009 (2018). https://doi.org/10.1007/s10854-018-9686-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9686-8

Navigation