Skip to main content
Log in

Comparative study on the synthesis and photocatalytic performance of Bi2WO6 nanosheets prepared via molten salt and hydrothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, Bi2WO6 nanosheets were synthesized via molten salt (M-Bi2WO6) and hydrothermal method (H-Bi2WO6), respectively. Powder X-ray diffraction and scanning electron microscopy measurements demonstrated that the as-prepared Bi2WO6 samples preferred orientated alone {001} plane in both hydrothermal and molten salt system, enabling the formation of Bi2WO6 nanosheets. The results of UV–vis diffuse reflection spectrum showed that the M-Bi2WO6 nanosheets exhibited an obvious red shift in visible light absorption band in comparison with H-Bi2WO6 nanosheets, and the band gap of M-Bi2WO6 and H-Bi2WO6 nanosheets was 2.49 and 2.62 eV, respectively. As a result, the M-Bi2WO6 nanosheets reached as high as 97.13% of photodegradation efficiency of Rhodamine B under 180 min of sunlight irradiation, which was two times higher than that of the H-Bi2WO6 nanosheets (86.88%). Meanwhile, the photodegradation rate over M-Bi2WO6 (97.30%) for TC degradation was about two times higher than that of H-Bi2WO6 (78.58%). The much-enhanced photocatalytic performance of M-Bi2WO6 nanosheets was attributed to the better crystallinity, higher light-harvesting capability and superior sorption capacity. Basing on the detailed experimental study and analysis, this work could be a practical guidance for the fabrication of Bi2WO6-based microstructures with enhanced photocatalytic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X.C. Meng, Z.S. Zhang, J. Mol. Catal. A 423, 533–549 (2016)

    Article  Google Scholar 

  2. R.A. He, S.W. Cao, P. Zhou, J.G. Yu, Chin. J. Catal. 35, 989–1007 (2014)

    Article  Google Scholar 

  3. W.G. Zhang, J. Liu, Z.Y. Guo, S.W. Yao, H.Z. Wang, J. Mater. Sci. 28, 9505–9513 (2017)

    Google Scholar 

  4. S.J. Li, X.F. Shen, J.S. Liu, L.S. Zhang, Environ. Sci. Nano. 4, 1155–1167 (2017)

    Article  Google Scholar 

  5. S.J. Li, S.W. Hu, W. Jiang, Y.P. Liu, Y.T. Zhou, J. Colloid Interface Sci. 521, 42–49 (2018)

    Article  Google Scholar 

  6. H.Z. An, Y. Du, T.M. Wang, C. Wang, W.C. Hao, J.Y. Zhang, Rare Met. 27, 243–250 (2008)

    Article  Google Scholar 

  7. X.C. Meng, Z.S. Zhang, J. Photochem. Photobiol. A 310, 33–44 (2015)

    Article  Google Scholar 

  8. S. Rengaraj, X.Z. Lia, P.A. Tanner, Z.F. Pan, G.K.H. Pang, J. Mol. Catal. A 247, 36–43 (2006)

    Article  Google Scholar 

  9. J. Yang, Y.J. Liang, K. Li, Y.L. Zhu, S.Q. Liu, R. Xu, W. Zhou, J. Alloys Compd. 725, 1144–1157 (2017)

    Article  Google Scholar 

  10. H.Y. Jiang, P. Li, G. Liu, J. Ye, J. Lin, J. Mater. Chem. A 3, 5119–5125 (2015)

    Article  Google Scholar 

  11. L. Ye, X. Jin, C. Liu, C. Ding, H. Xie, K.H. Chu, P.K. Wong, Appl. Catal. B 187, 281–290 (2016)

    Article  Google Scholar 

  12. K. Ren, K. Zhang, J. Liu, H. Luo, Y. Huang, X. Yu, CrystEngComm 14, 4384–4390 (2012)

    Article  Google Scholar 

  13. Z.X. Lin, J.M. Gong, P. Fu, J. Mater. Sci. 28, 4424–4430 (2017)

    Google Scholar 

  14. Y. Zhang, W. Li, Z. Sun, Q. Zhang, L. Wang, Z. Chen, J. Alloys Compd. 713, 78–86 (2017)

    Article  Google Scholar 

  15. K. Li, Y.J. Liang, J. Yang, Q. Gao, Y.L. Zhu, S.Q. Liu, R. Xu, X.Y. Wu, J. Alloys Compd. 695, 238–249 (2017)

    Article  Google Scholar 

  16. L.W. Zhang, T.G. Xua, X. Zhao, Y.F. Zhu, Appl. Catal. B 98, 138–146 (2010)

    Article  Google Scholar 

  17. S.J. Li, S.W. Hu, J.L. Zhang, W. Jiang, S.J. Liu, J. Colloid Interface Sci. 497, 93–101 (2017)

    Article  Google Scholar 

  18. N.A. Mcdowell, K.S. Knight, P. Lightfoot, Chem.-Eur. J. 12, 1493–1499 (2006)

    Article  Google Scholar 

  19. H.B. Fu, C.S. Pan, W.Q. Yao, Y.F. Zhu, Phys. Chem. B. 109, 22432–22439 (2005)

    Article  Google Scholar 

  20. S.G. Kumar, K.S.R.K. Rao, Appl. Surf. Sci. 355, 939–958 (2015)

    Article  Google Scholar 

  21. X. Li, J. Yu, M. Jaroniec, Chem. Soc. Rev. 45, 2603–2636 (2016)

    Article  Google Scholar 

  22. B. Wang, H. Yang, T. Xian, L.J. Di, R.S. Li, X.X. Wang, J. Nanomater. 16, 1–7 (2015)

    Google Scholar 

  23. L.H. Hoang, N.D. Phu, P.D. Chung, P.C. Guo, J. Mater. Sci. Mater. Electron. 28, 12191–12196 (2017)

    Article  Google Scholar 

  24. M. Shang, W.Z. Wang, J. Ren, S.M. Sun, L. Wang, L. Zhang, J. Mater. Chem. 19, 6213–6218 (2009)

    Article  Google Scholar 

  25. Z.H. Sun, J.J. Guo, S.M. Zhu, J. Ma, Y.L. Liao, D. Zhang, RSC Adv. 4, 27963–27970 (2014)

    Article  Google Scholar 

  26. D.X. Wu, H.T. Zhu, C.Y. Zhang, L. Chen, Chem. Commun. 46, 7250–7252 (2010)

    Article  Google Scholar 

  27. M. Shang, W.Z. Wang, H.L. Xu, Cryst. Growth Des. 9, 991–996 (2009)

    Article  Google Scholar 

  28. D.K. Ma, S.M. Huang, W.X. Chen, S.W. Hu, F.F. Shi, K.L. Fan, J. Phys. Chem. C 113, 4369–4374 (2009)

    Article  Google Scholar 

  29. M.J. Chen, Y. Huang, S.C. Lee, Chin. J. Catal. 38, 348–356 (2017)

    Article  Google Scholar 

  30. Z. Lou, J.N. Deng, L.L. Wang, L.J. Wang, T. Zhang, Sens. Actuators B 182, 217–220 (2013)

    Article  Google Scholar 

  31. J.K. Xiao, W. Dong, C.W. Song, Y.T. Yu, L. Zhang, C. Li, Y.Y. Yin, Mater. Sci. Semicond. Process. 40, 463–467 (2015)

    Article  Google Scholar 

  32. Y.Y. Zhao, Y.B. Wang, E.Z. Liu, J. Fan, X.Y. Hu, Appl. Surf. Sci. 436, 854–864 (2018)

    Article  Google Scholar 

  33. S.C. Zhang, C. Zhang, Y. Man, Y.F. Zhu, J. Solid State Chem. 179, 62–69 (2006)

    Article  Google Scholar 

  34. Z.J. Zhang, W.Z. Wang, M. Shang, W.Z. Yin, J. Hazard. Mater. 177, 1013–1018 (2010)

    Article  Google Scholar 

  35. G.K. Zhang, F. Lu, M. Li, J.L. Yang, X.Y. Zhang, B.B. Huang, J. Phys. Chem. Solids 71, 579–582 (2010)

    Article  Google Scholar 

  36. H.D. Xie, D.Z. Shen, X.Q. Wang, G.Q. Shen, Mater. Chem. Phys. 103, 334–339 (2007)

    Article  Google Scholar 

  37. Y.H. Shi, S.H. Feng, C.S. Cao, Mater. Lett. 44, 215–218 (2000)

    Article  Google Scholar 

  38. L.J. Xie, J.F. Ma, J. Zhou, Z.Q. Zhao, H. Tian, Y.G. Wang, J.T. Tao, X.Y. Zhu, J. Am. Ceram. Soc. 89, 1717–1720 (2006)

    Article  Google Scholar 

  39. L. Chen, J. He, Y. Liu, P. Chen, C. Tong, A. Shuang, F. Yin, Chin. J. Catal. 37, 780–791 (2016)

    Article  Google Scholar 

  40. C.Y. Xu, L. Zhen, R.S. Yang, Z.L. Wang, J. Am. Chem. Soc. 129, 15444–15445 (2007)

    Article  Google Scholar 

  41. L. Zhou, C.G. Jin, Y. Yu, F.L. Chi, S.L. Ran, Y.H. Lv, J. Alloys Compd. 680, 301–308 (2016)

    Article  Google Scholar 

  42. K.Y. Lin, B.J. Ma, W.G. Su, W.Y. Liu, Appl. Surf. Sci. 286, 61–65 (2013)

    Article  Google Scholar 

  43. S.M. Sun, W.Z. Wang, L. Zhang, E.P. Gao, D. Jiang, Y.F. Sun, Y. Xie, ChemSusChem 6, 1873–1877 (2013)

    Article  Google Scholar 

  44. X.B. Cao, L.L. Zhi, Y.H. Li, F. Fang, X. Cui, L.J. Ci, K.X. Ding, J.Q. Wei, ACS Appl. Mater. Interfaces 9, 32868–32875 (2017)

    Article  Google Scholar 

  45. J. Ren, W.Z. Wang, S.M. Sun, L. Zhang, J. Chang, Appl. Catal. B 92, 50–55 (2009)

    Article  Google Scholar 

  46. B. Feng, Z.Y. Wu, J.S. Liu, K.J. Zhu, Z.Q. Li, X. Jin, Y.D. Hou, Q.Y. Xi, M.Q. Cong, P.C. Liu, Q.L. Gu, Appl. Catal. B 206, 242–251 (2017)

    Article  Google Scholar 

  47. N. Kaneva, A. Bojinova, K. Papazova, D. Dimitrov, Catal. Today 252, 113–119 (2015)

    Article  Google Scholar 

  48. J. Xia, J. Di, S. Yin, H. Xu, J. Zhang, Y. Xu, L. Xu, H. Li, M. Ji, RSC Adv. 4, 82–90 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21571162), the Guangdong Province Enterprise-University-Academy Collaborative Project (No. 2012B091100474).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujun Liang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5712 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Liang, Y., Li, K. et al. Comparative study on the synthesis and photocatalytic performance of Bi2WO6 nanosheets prepared via molten salt and hydrothermal method. J Mater Sci: Mater Electron 29, 14311–14321 (2018). https://doi.org/10.1007/s10854-018-9565-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9565-3

Navigation