Skip to main content
Log in

Photocatalytic degradation and ferromagnetism in mesoporous La doped ZnS nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influence of Lanthanum (La) doping on the crystalline phase, thermal, optical, photocatalytic degradation and ferromagnetic properties of mesoporous ZnS:La nanoparticles is investigated. BET surface studies confirm the presence of mesoporous in the ZnS and ZnS:La nanoparticles. Photocatalytic activity of 5 wt% La doped ZnS is evaluated by the degradation of Turquoise Blue H5G in aqueous solution under sunlight. The photomineralization and photostability are validated by TOC and ICP-OES analyses. Photoconductivity measurements confirm the production of photocharge carrier. The long range ferromagnetism in La doped ZnS nanostructures due to defects is formed by vacancies and lattice deformation. Morphology and the size of the nanoparticles are probed by field emission scanning microscope. TEM images confirm the hexagonal structure of the doped sample. The cubic structure of undoped ZnS and hexagonal structure of mesoporous La doped sample is confirmed by Raman modes. The thermal analysis of La doped nanoparticles is analyzed by using thermo gravimetric and differential scanning calorimetry method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Scheme 2
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J. Fan, J. Zhang, P. Solsona, S. Surinach, M.D. Baro, J. Sortab, E. Pellicer, RSC Adv. 6, 104799–104807 (2016)

    Article  Google Scholar 

  2. Y. Feng, G. Wang, J. Liao, W. Li, C. Chen, M. Li, Z. Li, Sci. Rep. 7, 11622 (2017)

    Article  Google Scholar 

  3. S. Harish, J. Archana, M. Navaneethan, S. Ponnusamy, A. Singh, V. Gupta, D.K. Aswal, H. Ikedaa, Y. Hayakawa, RSC Adv. 7, 34366–34375 (2017)

    Article  Google Scholar 

  4. Y. Hong, J. Zhang, F. Huang, J. Zhang, X. Wang, Z. Wu, Z. Lin, J. Yu, J. Mater. Chem. A. 3, 13913–13919 (2015)

    Article  Google Scholar 

  5. G.J. Lee, A. Manivel, V. Batalova, G. Mokrousov, S. Masten, J. Wu, Ind. Eng. Chem. Res. 52, 11904–11912 (2013)

    Article  Google Scholar 

  6. K. Li, R. Chen, S.L. Li, M. Han, S.L. Xie, J.C. Bao, Z.H. Dai, Y.Q. Lan, Chem. Sci. (2015). https://doi.org/10.1039/C5SC01586C

    Google Scholar 

  7. M. Sookhakian, Y.M. Amin, W.J. Basirun, Appl. Surf. Sci. 283, 668–677 (2013)

    Article  Google Scholar 

  8. L. Zhao, P.F. Lu, Z.Y. Yu, J. Appl. Phys. 108, 113924 (2010)

    Article  Google Scholar 

  9. L. Chen, W. Heimbrodt, P.J. Klar, Phys. Status Solidi B. 247, 2522 (2010)

    Article  Google Scholar 

  10. P. Kaur, S. Kumar, A. Singh, Superlattices Microstruct. 83, 785–795 (2015)

    Article  Google Scholar 

  11. B. Poornaprakash, D. Amaranatha Reddy, G. Murali, J. Alloys Compd. 79, 577 (2013)

    Google Scholar 

  12. S. Kumar, C.L. Chen, C.L. Dong, J. Alloys Compd. 554, 357 (2013)

    Article  Google Scholar 

  13. S. Sambasivam, D. Paul Joseph, D. Raja Reddy, Mater. Sci. Eng. B. 150, 125 (2008)

    Article  Google Scholar 

  14. B. Poornaprakash, S. Ramu, S.H. Park, Mater. Lett. 164, 104 (2016)

    Article  Google Scholar 

  15. B. Poornaprakash, U. Chalapathi, U. Maddaka, Reddeppa, Superlattices Microstruct. (2016). https://doi.org/10.1016/j.spmi.2016.06.013

    Google Scholar 

  16. S. Horoz, B. Yakami, U. Poudyal et al. AIP Adv. 6, 045119 (2016)

    Article  Google Scholar 

  17. A. Chaudhuri, K. Mandal, Mater. Res. Bull. 47, 1057 (2012)

    Article  Google Scholar 

  18. S.O.B. Oppong, W.W. Anku, S.K. Shukla, P.P. Govender, Adv. Mater. Lett. 8(3), 295–302 (2017)

    Article  Google Scholar 

  19. J. Bunzli, S. Comby, A. Chauvin, J. Rare Earth 25, 257 (2007)

    Article  Google Scholar 

  20. P. Fischer, M. Polomska, I. Sosnowska, J. Phys. C Solid State Phys. 13, 1931 (1980)

    Article  Google Scholar 

  21. Q.R. Yao, J. Cai, H.Y. Zhou, J. Alloys Compd. 633, 170 (2015)

    Article  Google Scholar 

  22. D. Amaranatha Reddy, D.H. Kim, S.J. Rhee, C.U. Jung, B.W. Lee, C. Liu, J. Alloys Compd. 588, 596–604 (2014)

    Article  Google Scholar 

  23. X. Hai-Qing, C. Yuan, H. Wei-Qing et al. Chin. Phys. Lett. 28, 027806 (2011)

    Article  Google Scholar 

  24. H.Q. Xie, Y. Zeng, W.Q. Huang et al. Int. J. Phys. Sci. 5, 2672 (2010)

    Google Scholar 

  25. C.Y. Kung, S.L. Young, H.Z. Chen et al. Nanoscale Res. Lett. 7, 372 (2012)

    Article  Google Scholar 

  26. M.Y. Shahid, M. Asghar, H.M. Arbi, M. Zafar, S.Z. Ilyas, AIP Adv. 6, 025019 (2016)

    Article  Google Scholar 

  27. S.V. Nistor, M. Stefan, L.C. Nistor, E. Goovaerts, G.V. Tendeloo, Phys. Rev. B 81, 035336–035336 (2010)

    Article  Google Scholar 

  28. S. Ramesh, K.C. Wang, Ionics 15, 249 (2009)

    Article  Google Scholar 

  29. P. Uddandarao, R.M. Balakrishnan, Spectrochim. Acta A. 175, 200–207 (2017)

    Article  Google Scholar 

  30. K.S. Nalwa, A. Garg, J. Appl. Phys. 103, 044101 (2008)

    Article  Google Scholar 

  31. H. Xue, Y. Jiang, K. Yuan, T. Yang, J. Hou, C. Cao, K. Feng, X. Wang, Sci. Rep. 6, 29902 (2016)

    Article  Google Scholar 

  32. X. Kong, J. Liu, PLoS ONE. 9, e101744 (2014)

    Article  Google Scholar 

  33. D.P. Lapham, J.L. Lapham, Int. J. Pharm. (2017). https://doi.org/10.1016/j.ijpharm.2017.08.003

    Google Scholar 

  34. X. Chen, Z. Wu, Z. Gao, B.C. Ye, Nanomaterials 7, 258 (2017)

    Article  Google Scholar 

  35. S.F. Mansour, S.I. El-dek, M.K. Ahmed, Sci. Rep. 7, 43202 (2017)

    Article  Google Scholar 

  36. U.P. Gawai, U.P. Deshpande, B.N. Dole, RSC Adv 7, 12382–12390 (2017)

    Article  Google Scholar 

  37. J. Zhu, Y. Zhao, D. Tang, Z. Zhao, S.A.C. Carabineiro, J. Catal. 340, 41–48 (2016)

    Article  Google Scholar 

  38. U.A.A. Azlan, A.F.M. Noor, Bull. Mater. Sci. 40(3), 493–498 (2017)

    Article  Google Scholar 

  39. W.G. Nilsen, Phys. Rev. 182, 838–850 (1969)

    Article  Google Scholar 

  40. R. Marshall, S.S. Mitra, Phys. Rev. 134, A1019 (1964)

    Article  Google Scholar 

  41. M. Sreenivas, G.S. Harish, P. Sreedhara Reddy, Int. J. Mod. Eng. Res. 4, 10–16 (2014)

    Google Scholar 

  42. S. Jimenez-Sandoval, Phys. Rev. B 68, 054303–054309 (2003)

    Article  Google Scholar 

  43. Z. Hu, X. Duan, M. Gao, Q. Chen, L.-M. Peng, J. Phys. Chem. C 111, 2987–2991 (2007)

    Article  Google Scholar 

  44. R.D. Yang, S. Tripathy, F.E.H. Tay et al. J. Vac. Sci. Technol. B. 2, 984–992 (2003)

    Article  Google Scholar 

  45. J. Serrano, A. Cantarero, M. Cardon, Phys. Rev. B 69, 0143 (2004)

    Google Scholar 

  46. S. Kumar, M. Khadar, S. Dhara, T. Ravindran, K. Nair, Nucl. Instrum. Methods Phys. Res. Sect. B 251, 435–440 (2006)

    Article  Google Scholar 

  47. S.Y. Lee, Y.H. Shin, Y. Kim, J Lumin. 131, 1336 (2011)

    Article  Google Scholar 

  48. M. Rostami, RSC Adv. 7, 43424–43431 (2017)

    Article  Google Scholar 

  49. D. Moore, Z.L. Wang, J. Mater. Chem. 16, 3898 (2006)

    Article  Google Scholar 

  50. L. Ma, X. Zou, M. Hossu et al. Nanotechnology 27, 315602 (2016)

    Article  Google Scholar 

  51. B. Poornaprakash, K. Naveen Kumar, U. Chalapathi, J Mater Sci: Mater Electron. (2016). https://doi.org/10.1007/s10854-016-4588-0

    Google Scholar 

  52. X. Zeng, J. Zhang, F. Huang, J. Appl. Phys. 111, 123525 (2012)

    Article  Google Scholar 

  53. D. Amaranatha Reddy, G. Murali, R.P. Vijayalakshmi, Cryst. Res. Technol. 46, 731 (2011)

    Article  Google Scholar 

  54. L. Chandrasekar, P. Raji Bruno, R. Chandramohan, J Nanoelectron. Optoelectron. 8, 369 (2013)

    Article  Google Scholar 

  55. G. Murugadoss, J. Lumin. 4, 67 (2014)

    Google Scholar 

  56. G. Arun Kumar, H.S. Bhojya Naika, R. Viswanatha, Mater. Sci. Semicond. Process. 58, 22 (2017)

    Article  Google Scholar 

  57. H.W. Leverenz, Cornel/Symposium (Wiley, New York, 1948), p. 146bib>

    Google Scholar 

  58. S. Mukherjee, S. Chakraborty, Int. J. Nano Dimens. 5, 41 (2014)

    Google Scholar 

  59. N. Shanmugam, S. Cholan, G. Viruthagiri, R. Gobi, N. Kannadasan, Appl Nanosci 4, 359–365 (2014)

    Article  Google Scholar 

  60. S. Anandan, A. Vinu, K.L.P. Sheeja Lovely, N. Gokulakrishnan, P. Srinivasu, T. Mori, V. Murugesan, V. Sivamurugan, K. Ariga, J. Mol. Catal. A: Chem. 266, 149–157 (2007)

    Article  Google Scholar 

  61. S. Irfan, L. Li, A.S. Saleemib, C.W. Nan, J. Mater. Chem. A (2017). https://doi.org/10.1039/c7ta01847a

    Google Scholar 

  62. C.Y. Wang, C. Bottcher, D.W. Bahnemann, J.K. Dohrmann, J. Mater. Chem. 13, 2322–2329 (2003)

    Article  Google Scholar 

  63. S. Dhara, P.K. Giri, J. Appl. Phys. 111, 044320–044327 (2012)

    Article  Google Scholar 

  64. M.M.H. Farooqi, R.K. Srivastava, Mater. Sci. Semicond. Process. 20, 61–67 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nachimuthu Suganthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suganthi, N., Pushpanathan, K. Photocatalytic degradation and ferromagnetism in mesoporous La doped ZnS nanoparticles. J Mater Sci: Mater Electron 29, 13970–13983 (2018). https://doi.org/10.1007/s10854-018-9530-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9530-1

Navigation