Skip to main content
Log in

Comparative study on dynamic thermal-dielectric properties of epoxy composites with Al and Ni particles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Dynamic thermal-dielectric behaviors of the aluminum (Al) and nickel (Ni)/epoxy composites were investigated by means of broadband dielectric spectroscopy measurements at the temperature of − 20 to 200 °C and in the frequency range of 1–107 Hz. Results indicate that the dielectric permittivity, loss and electric conductivity of the two composites increased with temperature and exhibited a clear abrupt rise around the glass transition temperature (Tg) due to the occurrence of α-relaxation relating to the mobility of epoxy chain segments. The transition behavior in electrical properties is almost identical for the two composites: insulator below Tg and semi-conductor above Tg. The large increase in dielectric permittivity, loss and conductivity with temperature above Tg can be ascribed to the formation of direct current conduction of thermal-activated charge carriers resulting from the matrix. Compared with Ni, the core–shell structured Al endows epoxy much lower dielectric loss and conductivity owing to the presence of nanoscale insulating alumina shell between Al core and matrix, which serves as an interlayer between the Al cores, and prevents them from direct contacting with each other, thereby leading to highly suppressed loss and conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. İ. Taşçıoğlu, Ö.T. Özmen, H.M. Şağban, E. Yağlıoğlu, Ş. Altındal, J. Electron. Mater. 46, 2379 (2017)

    Article  Google Scholar 

  2. B. Li, P.I. Xidas, K.S. Triantafyllidis, E. Manias, Appl. Phys. Lett. 111, 082906 (2017)

    Article  Google Scholar 

  3. Y.F. Feng, H.H. Gong, Y.C. Xie, X.Y. Wei, L.J. Yang, Z.C. Zhang, J. Appl. Phys. 117, 094104 (2015)

    Article  Google Scholar 

  4. Y. Yang, H.L. Sun, B.P. Zhu, Z.Y. Wang, J.H. Wei, R. Xiong, J. Shi, Z.Y. Liu, Q.Q. Lei, Appl. Phys. Lett. 106, 012902 (2015)

    Article  Google Scholar 

  5. Q.M. Zhang, H.F. Li, P. Martin, F. Xia, Z.Y. Cheng, H.S. Xu, C. Huang, Nature 419, 284 (2002)

    Article  Google Scholar 

  6. Y. Zhang, Y. Wang, Y. Deng, M. Li, J.B. Bai, ACS Appl. Mater. Interfaces 4, 65 (2012)

    Article  Google Scholar 

  7. Z.M. Dang, S.H. Yao, J.K. Yuan, J.B. Bai, J. Phys. Chem. C 114, 13204 (2010)

    Article  Google Scholar 

  8. B. Li, C.I. Camilli, P.I. Xidas, K.S. Triantafyllidis, E. Manias, MRS Adv 2(6), 363–368 (2017)

    Article  Google Scholar 

  9. W.Y. Zhou, Y. Gong, L.T. Tu, L. Xu, W. Zhao, J.T. Cai, Y.T. Zhang, A.N. Zhou, J. Alloys Compd. 693, 1 (2017)

    Article  Google Scholar 

  10. A. Ameli, M. Nofar, C.B. Park, P. Pötschke, G. Rizvi, Carbon 71, 206 (2014)

    Article  Google Scholar 

  11. W.S. Tong, Y.H. Zhang, Q. Zhang, X.L. Luan, Y. Duan, S.F. Pan, F.Z. Lv, Q. An, Carbon 94, 590 (2015)

    Article  Google Scholar 

  12. S.L. Zhong, Z.M. Dang, W.Y. Zhou, H.W. Cai, Nanodielectrics 1, 41 (2018)

    Article  Google Scholar 

  13. X.Y. Huang, C. Kim, P.K. Jiang, Y. Yin, Z. Li, J. Appl. Phys. 105, 014105 (2009)

    Article  Google Scholar 

  14. X.L. Zeng, L.B. Deng, Y.M. Yao, R. Sun, J.B. Xu, C.P. Wong, J. Mater. Chem. C 4, 6037 (2016)

    Article  Google Scholar 

  15. S. Araby, I. Zaman, Q. Meng, N. Kawashima, A. Michelmore, H.C. Kuan, P. Majewski, J. Ma, L. Zhang, Nanotechnology 24, 165601 (2013)

    Article  Google Scholar 

  16. R. Qian, J.H. Yu, C. Wu, X. Zhai, P.K. Jiang, RSC Adv. 3, 17373 (2013)

    Article  Google Scholar 

  17. Z.M. Dang, S.S. You, J.W. Zha, H.T. Song, S.T. Li, Phys. Status Solidi 207, 739 (2010)

    Article  Google Scholar 

  18. Y.C. Zhou, H. Wang, F. Xiang, H. Zhang, K. Yu, L. Chen, Appl. Phys. Lett. 98, 182906 (2011)

    Article  Google Scholar 

  19. X.Y. Huang, P.K. Jiang, Adv. Mater. 27, 546 (2015)

    Article  Google Scholar 

  20. Z.M. Dang, Y.H. Lin, C.W. Nan, Adv. Mater. 15, 1625 (2003)

    Article  Google Scholar 

  21. W.H. Yang, S.H. Yu, R. Sun, S.M. Ke, H.T. Huang, R.X. Du, J. Phys. D 44, 475305 (2012)

    Article  Google Scholar 

  22. H.P. Xu, Z.M. Dang, N.C. Bing, Y.H. Wu, D.D. Yang, J. Appl. Phys. 107, 034105 (2010)

    Article  Google Scholar 

  23. M. Panda, V. Srinivas, A.K. Thakur, Appl. Phys. Lett. 92, 132905 (2008)

    Article  Google Scholar 

  24. X. Kuang, Z. Liu, H. Zhu, J.M.S. Zheng, Y.T. Zheng, J.W. Zha, Y. Yang, M.Z. Dang, Nano Energy 48, 144 (2018)

    Article  Google Scholar 

  25. Y.C. Zhou, Y.Y. Bai, K. Yu, Y. Kang, H. Wang, Appl. Phys. Lett. 102, 252903 (2013)

    Article  Google Scholar 

  26. J. Sun, Q.Z. Xue, Q.K. Guo, Y.H. Tao, W. Xing, Compos. A 67, 252 (2014)

    Article  Google Scholar 

  27. W.Y. Zhou, J. Zuo, W.E. Ren, Compos. A 43, 658 (2012)

    Article  Google Scholar 

  28. T. Han, L.L. Peng, S.X. Cao, D.C. Zhu, M.J. Tu, J. Zhang, Rare Metal Mat. Eng 43, 2311 (2014)

    Article  Google Scholar 

  29. H.P. Xu, H.Q. Xie, D.D. Yang, Y.H. Wu, J.R. Wang, J. Appl. Polym. Sci. 122, 3466 (2011)

    Article  Google Scholar 

  30. Y. Gong, W.Y. Zhou, X.Z. Sui, Y.J. Kou, L. Xu, Y.E. Duan, F.X. Chen, Y. Li, X.R. Liu, H.W. Cai, Q.G. Chen, Z.M. Dang, Polym. Eng. Sci. (2018). https://doi.org/10.1002/pen.24872

    Google Scholar 

  31. S.M. Lebedev, O.S. Gefle, S.N. Tkachenko, J. Electrostat. 68, 122 (2010)

    Article  Google Scholar 

  32. Y. Gong, W.Y. Zhou, Y.J. Kou, L. Xu, H.J. Wu, W. Zhao, High Voltage 2, 172 (2017)

    Article  Google Scholar 

  33. W.P. Li, L.J. Yu, Y.J. Zhu, D.Y. Hua, J. Phys. Chem. C 114, 14004 (2010)

    Article  Google Scholar 

  34. A. Jouili, S. Mansouri, A.A. Al-Ghamdi, L.E. Mir, W.A. Farooq, F. Yakuphanoglu, J. Electron. Mater. 46, 2221 (2017)

    Article  Google Scholar 

  35. Z.J. Wang, W.Y. Zhou, X.Z. Sui, L.N. Dong, H.W. Cai, J. Zuo, Q.G. Chen, J. Electron. Mater. 45, 3069 (2016)

    Article  Google Scholar 

  36. W.Y. Zhou, J. Mater. Sci. 46, 3883 (2011)

    Article  Google Scholar 

  37. Ç Bilkan, Y. Azizian-Kalandaragh, A. Şemsettin, R. Shokrani-Havigh, Phys. B 500, 154 (2016)

    Article  Google Scholar 

  38. A. Srivastava, K.K. Jana, P. Maiti, D. Kumar, O. Parkash, J. Eng. 2015, 1 (2015)

    Article  Google Scholar 

  39. Y.H. Li, J.J. Yuan, J. Xue, F.Y. Cai, F. Chen, Q. Fu, Compos. Sci. Technol. 118, 198 (2015)

    Article  Google Scholar 

  40. K. Prasad, K. Priyanka, K.P. Amarnath, A.R. Chandra, Kulkarni, J. Mater. Sci.: Mater. Electron. 25, 4856 (2014)

    Google Scholar 

  41. W.Y. Zhou, L. Xu, L.Y. Jiang, J.D. Peng, Y. Gong, X.R. Liu, H.W. Cai, G.H. Wang, Q.G. Chen, J. Alloys Compd. 710, 47 (2017)

    Article  Google Scholar 

  42. D.L. He, Y. Wang, X.Q. Chen, Y. Deng, Compos. A 93, 137 (2016)

    Article  Google Scholar 

  43. A.K. Jonscher, J. Phys. D 16, 2037 (1981)

    Google Scholar 

  44. K.L. Ngai, R. Casalini, C.M. Roland, Macromolecules 38, 4363 (2005)

    Article  Google Scholar 

  45. W.T. Wan, D.M. Yu, J. He, Y.C. Xie, L.B. Huang, J. Appl. Polym. Sci. 107, 1020 (2008)

    Article  Google Scholar 

  46. B.K. Singh, B. Kumar, Cryst. Res. Technol. 45, 1003 (2010)

    Article  Google Scholar 

  47. Z.J. Wang, W.Y. Zhou, L.N. Dong, X.Z. Sui, H.W. Cai, J. Zuo, Q.G. Chen, J. Alloys Compd. 682, 738 (2016)

    Article  Google Scholar 

  48. Z.J. Wang, W.Y. Zhou, L.N. Dong, H.W. Cai, J. Zuo, X.R. Liu, Q.G. Chen, Polym. Compos. 39, 887 (2018)

    Article  Google Scholar 

  49. L.Y. Xie, X.Y. Huang, C. Wu, P.K. Jiang, J. Mater. Chem. 21, 5897 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (51577154), the Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology (KF20151111), Shaanxi Provincial Natural Science Foundation, China (No. 2016JM5014). And Wenying Zhou acknowledges the fellowship provided by the China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenying Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Zhou, W., Gong, Y. et al. Comparative study on dynamic thermal-dielectric properties of epoxy composites with Al and Ni particles. J Mater Sci: Mater Electron 29, 13376–13388 (2018). https://doi.org/10.1007/s10854-018-9463-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9463-8

Navigation