Skip to main content
Log in

Preparation and electrochemical properties of nanorods and nanosheets structural Li4Ti5O12 as anode for lithium ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, nanorods and nanosheets structure of Li4Ti5O12 (LTO) with higher capacity and cycle performance are prepared by hydrothermal synthesis. We can obtain different nanostructural LTO by changing heating time in autoclave and molar ratio between lithium (Li) and titanium (Ti). Precursor was calcined at 600 °C for 6 h in air after heating to 180 °C with the holding time of 12 and 24 h in Teflon-lined PTFE autoclave vessel, nanorods and nanosheets structure of LTO were prepared successfully, respectively. Specially, when the molar ratio between Li and Ti was 4.2:5, the discharge capacities were 177.7 and 230.7 mAh g−1 at 20 mA g−1, respectively. When the holding time was 24 h as well as molar ratio between Li and Ti was 4.2:5, the band gap was least, and this pure LTO reversible capacities reached 90.36 and 73.12% after 200 and 3000 cycles at 100 mA g−1 and 1 A g−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Sabrina, C. Fermin, L. Michel., Appl. Phys. A 122, 1–7 (2016)

    Google Scholar 

  2. M. Alain, C.M. Julien, Nanomaterials 5, 2279–2301 (2015)

    Article  Google Scholar 

  3. Y. Yang, B. Qiao, X. Yang et al., Adv. Funct. Mater. 24, 4349–4356 (2014)

    Article  Google Scholar 

  4. J.Y. Liao, V. Chabot, M. Gu et al., Nano Energy 9, 383–391 (2014)

    Article  Google Scholar 

  5. T.F. Yi, J. Shu, Y.R. Zhu et al., J. Power Sources 195, 285–288 (2010)

    Article  Google Scholar 

  6. Y.Q. Wang, L. Gu, Y.G. Guo et al., J. Am. Chem. Soc. 134, 7874–7880 (2012)

    Article  Google Scholar 

  7. A. Mahmoud, J.M. Amarilla, K. Lasri et al., Electrochim. Acta 93, 163–172 (2013)

    Article  Google Scholar 

  8. Y. Liu, R. Xiao, Y. Fang et al., Electrochim. Acta 211, 1041–1047 (2016)

    Article  Google Scholar 

  9. Q. Tian, Z. Zhang, L. Yang et al., J. Alloys Compd. 705, 638–644 (2017)

    Article  Google Scholar 

  10. S. Chen, Y. Xin, Y. Zhou et al., Energy Environ. Sci. 7, 1924–1930 (2014)

    Article  Google Scholar 

  11. X. Sun, P.V. Radovanovic, B. Cui, ChemInform 46, 38–63 (2015)

    Google Scholar 

  12. G. Wang, C. Lu, X. Zhang et al., Nano Energy 36, 46–57 (2017)

    Article  Google Scholar 

  13. G.Y. Liu, R.X. Zhang, K.Y. Bao et al., Ceram. Int. 42, 11468–11472 (2016)

    Article  Google Scholar 

  14. X. Bai, W. Li, A. Wei et al., Electrochim. Acta 222, (2016)

  15. C. Zhang, D. Shao, J. Yu et al., J. Electroanal. Chem. 776, 188–192 (2016)

    Article  Google Scholar 

  16. X.B. Huang, H.H. Chen, S.B. Zhou et al., Appl. Mech. Mater. 633, 495–498 (2014)

    Google Scholar 

  17. D. Xu, P. Wang, R. Yang., Ceram. Int. 43, 7600–7606 (2017)

    Article  Google Scholar 

  18. L. Wang, Y. Zhang, M.E. Scofield et al., ChemSusChem 8, 3304–3313 (2015)

    Article  Google Scholar 

  19. H. Xu, Q. Tian, J. Huang et al., J. Phys. Chem. Solids 110, 49–57 (2017)

    Article  Google Scholar 

  20. M. Moazeni, H. Hajipour, M. Askari et al., Mater. Res. Bull. 61, 70–75 (2015)

    Article  Google Scholar 

  21. C. Jiang, S. Liu, Q. Lian et al., Ceram. Int. 33, 559–566 (2017)

    Google Scholar 

  22. Q. Tian, P. Chen, Z. Zhang et al., J. Power Sources 350, 49–55 (2017)

    Article  Google Scholar 

  23. G. Liu, X. Liu, L. Wang et al., Electrochim. Acta 222, (2016)

  24. L. Xiao, G. Chen, J. Sun et al., J. Mater. Chem. 46, 14618–14626 (2013)

    Article  Google Scholar 

  25. H.Y. Wu, M.H. Hon, C.Y. Kuan et al., RSC Adv. 5, 35224–35229 (2015)

    Article  Google Scholar 

  26. H. Ming, J. Ming, X. Li et al., Electrochim. Acta 116, 224–229 (2014)

    Article  Google Scholar 

  27. T.F. Yi, S.Y. Yang, Y.R. Zhu et al., Ceram. Int. 40, 9853–9858 (2014)

    Article  Google Scholar 

  28. J. Liu, X. Li, J. Yang et al., Electrochim. Acta 63, 100–104 (2012)

    Article  Google Scholar 

  29. L. Shen, E. Uchaker, X. Zhang et al., Adv. Mater. 24, 6502–6506 (2012)

    Article  Google Scholar 

  30. X. Wang, B. Liu, X. Hou et al., Nano Res. 7, 1073–1082 (2014)

    Article  Google Scholar 

  31. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, vol. 60, 2nd edn. (Wiley, 1980), pp. 669–676

  32. Y. Sun, H. Dong, Y. Xu et al., Electrochim. Acta 246, (2017)

  33. T. Trindade, P. O’Brien, X.M. Zhang., Chem. Mater. 9, 523–530 (1997)

    Article  Google Scholar 

  34. S. Hazra, S. Mandal, A. Ghosh et al., Phys. Rev. B 56, 8021–8027 (1997)

    Article  Google Scholar 

  35. H. Ge, H. Tian, H. Song et al., Mater. Res. Bull. 61, 459–462 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National International Technology Cooperation Plan (Grant No. 2014DFR50570).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guixia Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Dong, G., Li, Z. et al. Preparation and electrochemical properties of nanorods and nanosheets structural Li4Ti5O12 as anode for lithium ion batteries. J Mater Sci: Mater Electron 29, 12615–12623 (2018). https://doi.org/10.1007/s10854-018-9378-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9378-4

Navigation