Skip to main content
Log in

Structural, morphological and optical characteristics of fusiform Co-doped CeO2 via a facile hydrothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the fusiform Co-doped CeO2 particles were prepared by a hydrothermal method and characterized by X-ray diffraction (XRD), thermo-gravimetric differential thermal analysis (TG–DTA), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray spectrometer (EDX), X-ray photo-electron spectroscopy (XPS), Raman, photoluminescence (PL) and UV–Vis spectroscopy. The cubic fluorite structure of CeO2 were supported by XRD. Initially thermal gravimetric and differential thermal analysis were used to analyse the reaction mechanism and chemical process, which indicated a crystal temperature of the as-synthesized CeO2 particles at 600 °C. The reaction concentration of the solution were systematically researched. It is found that the reaction concentration is one key parameter for controlling the final micrographs. The optical properties were characterized by Raman, PL and UV–Vis spectroscopy. It has been demonstrated that oxygen vacancies and Ce3+ exist at the particle surfaces and boundaries. The appearance of luminescence peaks and emission peaks can be ascribed to the related oxygen defects. The appearance of Ce3+ and oxygen defects existing in fusiform Co-doped CeO2 products can cause the formation of several local band gap states, which is perhaps responsible for the red shift of band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Sun, C.M. Li, Phys. Chem. Chem. Phys. 17, 6718 (2015)

    Article  Google Scholar 

  2. A. Sobhani-Nasab, M. Maddahfar, S.M. Hosseinpour-Mashkani, J. Mol. Liq. 216, 1 (2016)

    Article  Google Scholar 

  3. J.G. Lv, J.H. Xu, M. Zhao, Ceram. Int. 41, 13983–13987 (2015)

    Article  Google Scholar 

  4. Z. Fan, F. Meng, M. Zhang, Z. Wu, Z. Sun, A. Li, Appl. Surf. Sci. 360, 298 (2016)

    Article  Google Scholar 

  5. H.F. Zhang, X. He, Z.Y. Zhang, P. Zhang, Y.Y. Li, Y.H. Ma, Y.S. Kuang, Y.L. Zhao, Z.F. Chai, Environ. Sci. Technol. 45, 3730 (2011)

    Google Scholar 

  6. M. Zhang, Y.Y. Xu, Z.Z. Gong, J. Alloys Compd. 649, 190–195 (2015)

    Article  Google Scholar 

  7. L. Weijia Han, X. Ren, Qi, Appl. Surf. Sci. 299, 12–18 (2014)

    Article  Google Scholar 

  8. E. Tang, G. Cheng, X. Ma, Powder Technol. 161, 209 (2006)

    Article  Google Scholar 

  9. F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P.F.G. Comelli, R. Rosei, Science 309, 752 (2005)

    Article  Google Scholar 

  10. L.N. Wang, F.M. Meng, K.K. Li, F. Lu, Appl. Surf. Sci. 286, 269 (2013)

    Article  Google Scholar 

  11. H.R. Tan, J.P.Y. Tan, C. Boothroyd, T.W. Hansen, Y.L. Foo, M. Lin, J. Phys. Chem. C 116, 242 (2012)

    Article  Google Scholar 

  12. H. Imagawa, A. Suda, K. Yamamura, S.H. Sun, J. Phys. Chem. C 115, 1740 (2011)

    Article  Google Scholar 

  13. C.T. Campbell, C.H.F. Peden, Science 309, 713 (2005)

    Article  Google Scholar 

  14. P. Bera, A. Gayen, M.S. Hegde, N.P. Lalla, L. Spadaro, F. Frusteri, F. Arena, J. Phys. Chem. B 107, 6122 (2003)

    Article  Google Scholar 

  15. Z.L. Wang, Z.W. Quan, J. Lin, Inorg. Chem. 46, 5237 (2007)

    Article  Google Scholar 

  16. X.D. Zhou, W. Huebner, Appl. Phys. Lett. 79, 3512–3514 (2001)

    Article  Google Scholar 

  17. R.V. Barde, Spectrochim. Acta A 153, 160 (2016)

    Article  Google Scholar 

  18. X.M. Qu, L.X. You, X.C. Tian, B.W. Zhang, G.D. Mahadevan, Y.X. Jiang, S.G. Sun, Electrochim. Acta 182, 1078 (2015)

    Article  Google Scholar 

  19. Y. Liu, H. Huang, L.L. Wang, D.P. Cai, B. Liu, D.D. Wang, Q.H. Li, T.H. Wang, Sens. Actuators B 223, 730 (2016)

    Article  Google Scholar 

  20. S.S. Gu, Y.N. Chen, X.H. Yuan, H. Wang, X.H. Chen, Y. Liu, Q. Jiang, Z.B. Wu, G.M. Zeng, RSC Adv. 5, 79556 (2015)

    Article  Google Scholar 

  21. Q.H. Bo, F.M. Meng, L.N. Wang, Mater. Lett. 133, 216 (2014)

    Article  Google Scholar 

  22. R.B. Yu, L. Yan, P. Zheng, J. Chen, X.R. Xing, J. Phys. Chem. C 112, 19896 (2008)

    Article  Google Scholar 

  23. X.W. Lu, X.Z. Li, F. Chen, C.Y. Ni, Z.G. Chen, J. Alloys Compd. 476, 958 (2009)

    Article  Google Scholar 

  24. C. Paun, O.V. Safonova, J. Szlachetko, P.M. Abdala, M. Nachtegaal, J. Sa, E. Kleymenov, A. Cervellino, F. Krumeich, J.A. van Bokhoven, J. Phys. Chem. C 116, 7312 (2012)

    Article  Google Scholar 

  25. M. Jobbagy, F. Marino, B. Schonbrod, G. Baronetti, M. Laborde, Chem. Mater. 18, 1945–1950 (2006)

    Article  Google Scholar 

  26. H. Xiao, Z. Ai, L. Zhang, J. Phys. Chem. C 113, 16625 (2009)

    Article  Google Scholar 

  27. L. Xu, H. Song, B. Dong, Y. Wang, J. Chen, X. Bai, Inorg. Chem. 49, 10590 (2010)

    Article  Google Scholar 

  28. D. Arumugam, M. Thangapandian, A. Jayaram, G.S. Okram, N.P. Lalla, M.F.B. Amirtham, J. Phys. Chem. C 120, 26544 (2016)

    Article  Google Scholar 

  29. F.M. Meng, H.J. Li, J.F. Gong, Z.H. Fan, J. Mater. Sci. Mater. Electron. 27, 8433 (2016)

    Article  Google Scholar 

  30. S. Colis, A. Bouaine, G. Schmerber, C. Ulhaq-Bouillet, A. Dinia, S. Choua, P. Turek, Phys. Chem. Chem. Phys. 14, 7256 (2012)

    Article  Google Scholar 

  31. J.R. McBride, K.C. Hass, B.D. Poindexter, W.H. Weber, J. Appl. Phys. 76, 2435 (1994)

    Article  Google Scholar 

  32. N.J. Lawrence, J.R. Brewer, L. Wang, T.S. Wu, J. Wells-Kingsbury, M.M. Ihrig, G.H. Wang, Y.L. Soo, W.N. Mei, C.L. Cheung, Nano Lett. 11, 2666 (2011)

    Article  Google Scholar 

  33. Z.P. Li, F.C. Han, C. Li, X.L. Jiao, D.R. Chen, RSC Adv. 42, 60975 (2016)

    Article  Google Scholar 

  34. T. Hattori, K. Kobayashi, M. Ozawa, Jpn. J. Appl. Phys. 56, 01 (2017)

    Google Scholar 

  35. B. Choudhury, A. Choudhury, Mater. Chem. Phys. 131, 666 (2012)

    Article  Google Scholar 

  36. K.S. Hemalatha, K. Rukmani, RSC Adv. 6, 74354 (2016)

    Article  Google Scholar 

  37. I.O. Mazali, B.C. Viana, O.L. Alves, J.M. Filho, A.G. Souza Filho, J. Phys. Chem. Solids 68, 622 (2007)

    Article  Google Scholar 

  38. S.B. Khan, M. Faisal, M.M. Rahman, A. Jamal, Sci. Total Environ. 409, 2987 (2011)

    Article  Google Scholar 

  39. C.W. Sun, H. Li, H.R. Zhang, Z.X. Wang, L.Q. Chen, Nanotechnology 16, 1454 (2005)

    Article  Google Scholar 

  40. X.D. Li, J.G. Li, D. Huo, Z.M. Xiu, X.D. Sun, J. Phys. Chem. C 113, 1806 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Anhui Provincial Natural Science Foundation of China (1508085SME219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanming Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Meng, F., Gao, C. et al. Structural, morphological and optical characteristics of fusiform Co-doped CeO2 via a facile hydrothermal method. J Mater Sci: Mater Electron 29, 11482–11488 (2018). https://doi.org/10.1007/s10854-018-9243-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9243-5

Navigation