Skip to main content
Log in

Multifunctional performance of gC3N4-BiFeO3-Cu2O hybrid nanocomposites for magnetic separable photocatalytic and antibacterial activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 22 July 2020

This article has been updated

Abstract

Highly active gC3N4-BiFeO3-Cu2O nanocomposites were successfully prepared via a facile, cost effective and eco-friendly method of hydrothermally wet precipitation combined with ultrasonic dispersion process. The prepared samples were characterized by XRD, FTIR, HRSEM, EDS, TEM, UV–Vis DRS, PL, VSM, BET and electrochemical properties. By means of these analysis for examine the crystal phase, nanostructure, band gap and light-harvesting properties were carried out. UV-DRS spectra indicate that the bandgap of g-C3N4 (2.7 eV) reduced to 2.59 and 2.21 eV by mixed with corresponds to BiFeO3 and BiFeO3/Cu2O nanomaterials. The ideal photocatalytic activity of the gC3N4-BiFeO3-Cu2O nanocomposites, where RhB dye under visible light irradiation which was up to 4.36 and 2.52 times as the higher photodegradation ability to compare pristine g-C3N4 and gC3N4-BiFeOcatalyst. The magnetization was confirmed by VSM studies, and hence, after the photocatalytic reaction, the magnetically separable catalyst can be quickly separated from the water by an external magnetic field. The superior photocatalytic performance is due to the synergistic effect on the interface of BiFeO3/Cu2O in the gC3N4-BiFeO3-Cu2O nanocomposites has reduced the bandgap which enables high separation efficiency of the charge carrier, suppressed recombination rate and their high surface area. Moreover, the chief gC3N4-BiFeO3-Cu2O catalyst can exhibited the lesser charge transfer resistance (impedance), enhances of photocurrent responses, whereas exposed to the development of photocatalytic appearance and more charge carrier ability. Also, the antibacterial activity of the gC3N4-BiFeO3-Cu2O nanocomposite has showing a well deactivation in both G+ (S. aureus) and G (E. coli) bacteria’s whereas compare to other prepared samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Change history

  • 22 July 2020

    In the original version of this article, Figs. 4, 12, and 17 were inadvertantly published with errors. The original versions of Figures 4, 12 and 17 have now been corrected by publishing this correction article. Also, the title has now been updated to ���Multifunctional performance of gC3N4-BiFeO3-Cu2O hybrid nanocomposites for magnetic separable photocatalytic performance and antibacterial activity���. This has been corrected with this erratum.

References

  1. Y. Chen, W. Huang, D. He et al., Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation. ACS Appl. Mater. Interfaces 6, 14405–14414 (2014). https://doi.org/10.1021/am503674e

    Article  Google Scholar 

  2. X. Fuku, K. Kaviyarasu, N. Matinise, M. Maaza, Punicalagin green functionalized Cu/Cu2O/ZnO/CuO nanocomposite for potential electrochemical transducer and catalyst. Nanoscale Res. Lett. 11, 9–14 (2016). https://doi.org/10.1186/s11671-016-1581-8

    Article  Google Scholar 

  3. M. Mousavi, A. Habibi-Yangjeh, Magnetically separable ternary g-C3N4/Fe3O4/BiOI nanocomposites: novel visible-light-driven photocatalysts based on graphitic carbon nitride. J. Colloid Interface Sci. 465, 83–92 (2016). https://doi.org/10.1016/j.jcis.2015.11.057

    Article  Google Scholar 

  4. R. Fagan, D. McCormack, S. Hinder, S. Pillai, photocatalytic properties of g-C3N4–TiO2 heterojunctions under UV and visible light conditions. Materials (Basel) 9, 286 (2016). https://doi.org/10.3390/ma9040286

    Article  Google Scholar 

  5. K. Kaviyarasu, L. Kotsedi, A. Simo et al., Photocatalytic activity of ZrO2doped lead dioxide nanocomposites: investigation of structural and optical microscopy of RhB organic dye. Appl. Surf. Sci. 421, 234–239 (2017). https://doi.org/10.1016/j.apsusc.2016.11.149

    Article  Google Scholar 

  6. W.J. Ong, L.L. Tan, Y.H. Ng et al., Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016). https://doi.org/10.1021/acs.chemrev.6b00075

    Article  Google Scholar 

  7. X. Lin, D. Xu, R. Zhao et al., Highly efficient photocatalytic activity of g-C3N4 quantum dots (CNQDs)/Ag/Bi2MoO6 nano heterostructure under visible light. Sep. Purif. Technol. 178, 163–168 (2017). https://doi.org/10.1016/j.seppur.2017.01.020

    Article  Google Scholar 

  8. M. Mousavi, A. Habibi-Yangjeh, M. Abitorabi, Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. J. Colloid Interface Sci. 480, 218–231 (2016). https://doi.org/10.1016/j.jcis.2016.07.021

    Article  Google Scholar 

  9. N. Matinise, X.G. Fuku, K. Kaviyarasu et al., ZnO nanoparticles via Moringa oleifera green synthesis: physical properties & mechanism of formation. Appl. Surf. Sci. 406, 339–347 (2017). https://doi.org/10.1016/j.apsusc.2017.01.219

    Article  Google Scholar 

  10. M. Pirhashemi, A. Habibi-Yangjeh, S.R. Pouran, Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. J. Ind. Eng. Chem. (2018). https://doi.org/10.1016/j.jiec.2018.01.012

    Google Scholar 

  11. A. Akhundi, A. Habibi-Yangjeh, Graphitic carbon nitride nanosheets decorated with CuCr2O4 nanoparticles: novel photocatalysts with high performances in visible light degradation of water pollutants. J. Colloid Interface Sci. 504, 697–710 (2017). https://doi.org/10.1016/j.jcis.2017.06.025

    Article  Google Scholar 

  12. X. Bai, J. Wei, B. Tian et al., Size effect on optical and photocatalytic properties in BiFeO3 nanoparticles. J. Phys. Chem. C 120, 3595–3601 (2016). https://doi.org/10.1021/acs.jpcc.5b09945

    Article  Google Scholar 

  13. M. Mousavi, A. Habibi-Yangjeh, Magnetically recoverable highly efficient visible-light active g-C3N4/Fe3O4/Ag2WO4/AgBr nanocomposites for photocatalytic degradations of environmental pollutants. Adv Powder Technol 29, 94–105 (2018). https://doi.org/10.1016/j.apt.2017.10.016

    Article  Google Scholar 

  14. X. Wang, W. Mao, J. Zhang et al., Facile fabrication of highly efficient g-C3N4/BiFeO3 nanocomposites with enhanced visible light photocatalytic activities. J. Colloid Interface Sci. 448, 17–23 (2015). https://doi.org/10.1016/j.jcis.2015.01.090

    Article  Google Scholar 

  15. T. Fan et al., Synthesis and characterization of g-C3N4/BiFeO3 composites with an enhanced visible light photocatalytic activity. Mater. Sci. Semicond. Process. 40, 439–445 (2015). https://doi.org/10.1016/j.mssp.2015.06.054

    Article  Google Scholar 

  16. F. Niu, D. Chen, L. Qin et al., Facile synthesis of highly efficient p-n heterojunction CuO/BiFeO3 composite photocatalysts with enhanced visible-light photocatalytic activity. Chem Cat Chem 7, 3279–3289 (2015). https://doi.org/10.1002/cctc.201500634

    Google Scholar 

  17. X. Yuan, C. Zhou, Q. Jing et al., Facile synthesis of g-C3N4 nanosheets/ZnO nanocomposites with enhanced photocatalytic activity in reduction of aqueous chromium(VI) under visible light. Nanomaterials 6, 173 (2016). https://doi.org/10.3390/nano6090173

    Article  Google Scholar 

  18. D. Lu, H. Wang, X. Zhao et al., Highly efficient visible-light-induced photoactivity of Z-scheme g-C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen. ACS Sustain. Chem. Eng. 5, 1436–1445 (2017). https://doi.org/10.1021/acssuschemeng.6b02010

    Article  Google Scholar 

  19. L. Zhang, X. He, X. Xu et al., Highly active TiO2/g-C3N4/G photocatalyst with extended spectral response towards selective reduction of nitrobenzene. Appl. Catal. B Environ. 203, 1–8 (2017). https://doi.org/10.1016/j.apcatb.2016.10.003

    Article  Google Scholar 

  20. M. Mousavi, A. Habibi-Yangjeh, S.R. Pouran, Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts. J. Mater. Sci. Mater. Electron. 29, 1719 (2018)

    Article  Google Scholar 

  21. J. An, G. Zhang, R. Zheng, P. Wang, Removing lignin model pollutants with BiFeO3–g-C3N4 compound as an efficient visible-light-heterogeneous Fenton-like catalyst. J. Environ. Sci. (China) 48, 218–229 (2016). https://doi.org/10.1016/j.jes.2016.01.024

    Article  Google Scholar 

  22. A. Mitra, P. Howli, D. Sen et al., Cu2O/g-C3N 4 nanocomposites: an insight into the band structure tuning and catalytic efficiencies. Nanoscale 8, 19099–19109 (2016). https://doi.org/10.1039/C6NR06837E

    Article  Google Scholar 

  23. J. Xue, S. Ma, Y. Zhou et al., Fabrication of porous g-C3N4/Ag/Fe2O3 composites with enhanced visible light photocatalysis performance. RSC Adv. 5, 58738–58745 (2015). https://doi.org/10.1039/C5RA09978A

    Article  Google Scholar 

  24. L. Li, H. Bi, S. Gai et al., Uniformly dispersed ZnFe2O4 nanoparticles on nitrogen-modified graphene for high-performance supercapacitor as electrode. Sci. Rep. 7, 1–12 (2017). https://doi.org/10.1038/srep43116

    Article  Google Scholar 

  25. M. Xu, L. Han, S. Dong, Facile fabrication of highly efficient g-C3N4/Ag2O heterostructured photocatalysts with enhanced visible-light photocatalytic activity. ACS Appl. Mater. Interfaces 5, 12533–12540 (2013). https://doi.org/10.1021/am4038307

    Article  Google Scholar 

  26. Y. Yao, Y. Cai, F. Lu et al., Magnetic ZnFe2O4-C3N4 hybrid for photocatalytic degradation of aqueous organic pollutants by visible light. Ind. Eng. Chem. Res. 53, 17294–17302 (2014). https://doi.org/10.1021/ie503437z

    Article  Google Scholar 

  27. M. Reli, P. Huo, M. Šihor et al., Novel TiO2/C3N4 Photocatalysts for photocatalytic reduction of CO2 and for photocatalytic decomposition of N2O. J. Phys. Chem. A 120, 8564–8573 (2016)

    Article  Google Scholar 

  28. Y. Zang, L. Li, Y. Zuo et al., Facile synthesis of composite g-C3N4/WO3: a nontoxic photocatalyst with excellent catalytic activity under visible light. RSC Adv. 3, 13646 (2013). https://doi.org/10.1039/c3ra41982g

    Article  Google Scholar 

  29. R. Yin, Q. Luo, D. Wang, H. Sun, Y. Li, X. Li, J. An, SnO2/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity. J. Mater. Sci. 49, 6067–6073 (2014)

    Article  Google Scholar 

  30. W. Zhao, Z. Wei, H. He et al., Supporting 1-D AgVO3 nanoribbons on single layer 2-D graphitic carbon nitride ultrathin nanosheets and their excellent photocatalytic activities. Appl. Catal. A 501, 74–82 (2015). https://doi.org/10.1016/j.apcata.2015.05.020

    Article  Google Scholar 

  31. X. She, J. Wu, H. Xu et al., High efficiency photocatalytic water splitting using 2D α-Fe2O3/g-C3N4 Z-scheme catalysts. Adv. Energy Mater. 1700025, 1700025 (2017). https://doi.org/10.1002/aenm.201700025

    Article  Google Scholar 

  32. Y. Li, H. Zhang, P. Liu et al., Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity. Small 9, 3336–3344 (2013). https://doi.org/10.1002/smll.201203135

    Google Scholar 

  33. M.V. Arularasu, M. Anbarasu, S. Poovaragan, R. Sundaram, K. Kanimozhi, C.M. Magdalane, K. Kaviyarasu, F.T. Thema, D. Letsholathebe, G.T. Mola, M. Maaza, Structural, optical, morphological and microbial studies on SnO2 nanoparticles prepared by Co-precipitation method. J. Nanosci. Nanotechnol. 18(5), 3511–3517 (2018). https://doi.org/10.1166/jnn.2018.14658

    Article  Google Scholar 

  34. W. Ma, L. Chen, J. Dai et al., Magnetic Co0.5 Zn0.5Fe2O4 nanoparticle-modified polymeric g-C3N4 sheets with enhanced photocatalytic performance for chloromycetin degradation. RSC Adv 6, 48875–48883 (2016). https://doi.org/10.1039/C6RA07915F

    Article  Google Scholar 

  35. C.M. Magdalane, K. Kaviyarasu, J.J. Vijaya et al., Evaluation on the heterostructured CeO2/Y2O3 binary metal oxide nanocomposites for UV/Vis light induced photocatalytic degradation of Rhodamine—B dye for textile engineering application. J. Alloys Compd. 727, 1324–1337 (2017). https://doi.org/10.1016/j.jallcom.2017.08.209

    Article  Google Scholar 

  36. M. Yin, F. Jia, C. Wu et al., Coupling g-C3N4 nanobelts and Cu(OH)2 nanoparticles with TiO2 for visible-light photocatalytic H2 production. Mater. Sci. Eng. B 223, 35–42 (2017). https://doi.org/10.1016/j.mseb.2017.05.003

    Article  Google Scholar 

  37. X. Jia, R. Dai, Y. Sun, H. Song, X. Wu, One-step hydrothermal synthesis of Fe3O4/g-C3N4 nanocomposites with improved photocatalytic activities. J. Mater. Sci. 27, 3791–3798 (2016)

    Google Scholar 

  38. V. Shanmugam, K.S. Jeyaperumal, Investigations of visible light driven Sn and Cu doped ZnO hybrid nanoparticles for photocatalytic performance and antibacterial activity. Appl Surf Sci. doi (2017). https://doi.org/10.1016/j.apsusc.2017.11.167

    Google Scholar 

  39. F. Dong, Z. Zhao, Y. Sun et al., An advanced semimetal-organic Bi spheres-g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purification. Environ. Sci. Technol. 49, 12432–12440 (2015). https://doi.org/10.1021/acs.est.5b03758

    Article  Google Scholar 

  40. M.C. Maria, K. Kaviyarasu, V.J. Judith et al., Facile synthesis of heterostructured cerium oxide/yttrium oxide nanocomposite in UV light induced photocatalytic degradation and catalytic reduction: synergistic effect of antimicrobial studies. J. Photochem. Photobiol. B 173, 23–34 (2017). https://doi.org/10.1016/j.jphotobiol.2017.05.024

    Article  Google Scholar 

  41. R.C. Pawar, S. Kang, J.H. Park et al., Evaluation of a multi-dimensional hybrid photocatalyst for enrichment of H2 evolution and elimination of dye/non-dye pollutants. Catal. Sci. Technol. 7, 2579–2590 (2017). https://doi.org/10.1039/C7CY00466D

    Article  Google Scholar 

  42. S. Yin, J. Di, M. Li, Y. Sun, J. Xia, H. Xu, W. Fan, H. Li, Ionic liquid-assisted synthesis and improved photocatalytic activity of p-n junction g-C3N4/BiOCl. J. Mater. Sci. 51, 4769–4777 (2016)

    Article  Google Scholar 

  43. J. Wang, L. Tang, G. Zeng et al., Plasmonic Bi metal deposition and g-C3N4 coating on Bi2WO6 microspheres for efficient visible-light photocatalysis. ACS Sustain. Chem. Eng. 5, 1062–1072 (2017). https://doi.org/10.1021/acssuschemeng.6b02351

    Article  Google Scholar 

  44. A. Leelavathi, B. Mukherjee, C. Nethravathi, S. Kundu, M. Dhivya, N. Ravishankar, G. Madras, Highly photoactive heterostructures of PbO quantum dots on TiO2. RSC Adv. 3, 20970 (2013)

    Article  Google Scholar 

  45. Q.P. Luo, X.Y. Yu, B.X. Lei, H.Y. Chen, D.B. Kuang, C.Y. Su, Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity. J. Phys. Chem. C 116, 8111–8117 (2012)

    Article  Google Scholar 

  46. G. Nagaraju, S.A. Prashanth, M. Shastri, K.V. Yathish, C. Anupama, D. Rangappa, Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial. Mater. Res. Bull. 94, 54–63 (2017)

    Article  Google Scholar 

  47. S. Singh, K.C. Barick, B. Bahadur, Fe3O4 embedded ZnO nanocomposites for the removal of toxic metal ions, organic dyes and bacterial pathogens. J Mater Chem. A. 1, 3325 (2013)

    Article  Google Scholar 

  48. A. Hamrouni, H. Lachheb, A. Houas, Synthesis, characterization and photocatalytic activity of ZnO-SnO2 nanocomposites. Mater. Sci. Eng. B. 178, 1371–1379 (2013). https://doi.org/10.1016/j.mseb.2013.08.008

    Article  Google Scholar 

  49. G. Yang, Z. Yan, T. Xiao, Preparation and characterization of SnO2/ZnO/TiO2 composite semiconductor with enhanced photocatalytic activity. Appl. Surf. Sci. 258, 8704–8712 (2012)

    Article  Google Scholar 

  50. Y. Yao, Y. Cai, F. Lu, J. Qin, F. Wei, C. Xu, S. Wang, Magnetic ZnFe2O4-C3N4 hybrid for photocatalytic degradation of aqueous organic pollutants by visible light. Ind. Eng. Chem. Res. 53, 17294–17302 (2014)

    Article  Google Scholar 

  51. Y. Si, N. Liu, J. Zhong, J. Li, D. Ma, SDBS-assisted hydrothermal treatment of TiO2 with improved photocatalytic activity. Mater. Lett. 212, 147–150 (2018)

    Article  Google Scholar 

  52. M. Mohammadi, S. Sabbaghi, H. Sadeghi, M.M. Zerafat, R. Pooladi, Preparation and characterization of TiO2/ZnO/CuO nanocomposite and application for phenol removal from wastewaters, Desalin. Water Treat. 57, 799–809 (2016)

    Article  Google Scholar 

  53. R. Yousefi, F. Jamali-Sheini, M. Cheraghizade, S. Khosravi-Gandomani, A. Sáaedi, N.M. Huang, W.J. Basirun, M. Azarang, Enhanced visible-light photocatalytic activity of strontium-doped zinc oxide nanoparticles. Mater. Sci. Semicond. Process. 32, 152–159 (2015)

    Article  Google Scholar 

  54. S. Rajendran, M.M. Khan, F. Gracia, J. Qin, V.K. Gupta, S. Arumainathan, Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci. Rep. 6, 31641 (2016)

    Article  Google Scholar 

  55. S. Kumar, T. Surendar, B. Kumar et al., Synthesis of magnetically separable and recyclable g-C3N4-Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under visible-light irradiation. J. Phys. Chem. C 117, 26135–26143 (2013). https://doi.org/10.1021/jp409651g

    Article  Google Scholar 

  56. J. Zhao, Q. He, X. Zhang et al., Preparation and properties of visible light responsive gC3N4 /BiNbO4 photocatalysts for tinidazole decomposition. Integr. Ferroelectr. 176, 37–53 (2016). https://doi.org/10.1080/10584587.2016.1248219

    Article  Google Scholar 

  57. Y. Feng, J. Shen, Q. Cai et al., The preparation and properties of a g-C3N4/AgBr nanocomposite photocatalyst based on protonation pretreatment. New J. Chem. 39, 1132–1138 (2015). https://doi.org/10.1039/C4NJ01433B

    Article  Google Scholar 

  58. T. Fan, C. Chen, Z. Tang, Hydrothermal synthesis of novel BiFeO3/BiVO4 heterojunctions with enhanced photocatalytic activities under visible light irradiation. RSC Adv. 6, 9994–10000 (2016). https://doi.org/10.1039/C5RA26500B

    Article  Google Scholar 

  59. Y. Bao, K. Chen, A novel Z-scheme visible light driven Cu2O/Cu/g-C3N4 photocatalyst using metallic copper as a charge transfer mediator. Mol. Catal. 432, 187–195 (2017). https://doi.org/10.1016/j.mcat.2017.01.008

    Article  Google Scholar 

  60. M. Sharma, S. Vaidya, A.K. Ganguli, Enhanced photocatalytic activity of g-C3N4-TiO2 nanocomposites for degradation of Rhodamine B dye. J Photochem. Photobiol. A 335, 287–293 (2017). https://doi.org/10.1016/j.jphotochem.2016.12.002

    Article  Google Scholar 

  61. S. Ma, S. Zhan, Y. Jia, Q. Zhou, Highly efficient antibacterial and Pb(II) removal effects of Ag-CoFe2O4-GO nanocomposite. ACS Appl. Mater. Interfaces 7, 10576–10586 (2015). https://doi.org/10.1021/acsami.5b02209

    Article  Google Scholar 

  62. J. Chen, D. Zhao, Z. Diao et al., Bifunctional modification of graphitic carbon nitride with MgFe2O4 for enhanced photocatalytic hydrogen generation. ACS Appl. Mater. Interfaces 7, 18843–18848 (2015). https://doi.org/10.1021/acsami.5b05714

    Article  Google Scholar 

  63. J. Zeng, T. Song, M. Lv et al., Plasmonic photocatalyst Au/g-C3N4/NiFe2O4 nanocomposites for enhanced visible-light-driven photocatalytic hydrogen evolution. RSC Adv. 6, 54964–54975 (2016). https://doi.org/10.1039/C6RA08356K

    Article  Google Scholar 

  64. M.C. Maria, K. Kaviyarasu, V.J. Judith et al., Photocatalytic degradation effect of malachite green and catalytic hydrogenation by UV–illuminated CeO2/CdO multilayered nanoplatelet arrays: investigation of antifungal and antimicrobial activities. J Photochem. Photobiol. B 169, 110–123 (2017). https://doi.org/10.1016/j.jphotobiol.2017.03.008

    Article  Google Scholar 

  65. D. Saravanakkumar, S. Sivaranjani, K. Kaviyarasu et al., Synthesis and characterization of ZnO–CuO nanocomposites powder by modified perfume spray pyrolysis method and its antimicrobial investigation. J. Semicond. 39, 033001 (2018). https://doi.org/10.1088/1674-4926/39/3/033001

    Article  Google Scholar 

  66. K. Kaviyarasu, M.C. Maria, K. Kanimozhi et al., Elucidation of photocatalysis, photoluminescence and antibacterial studies of ZnO thin films by spin coating method. J Photochem. Photobiol. B 173, 466–475 (2017). https://doi.org/10.1016/j.jphotobiol.2017.06.026

    Article  Google Scholar 

  67. J. Li et al., In situ growing Bi2MoO6 on g-C3N4 nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation. J. Hazard. Mater. 321, 183–192 (2017)

    Article  Google Scholar 

  68. L. Sun, T. Du, C. Hu et al., Antibacterial activity of graphene oxide/g-C3N4 composite through photocatalytic disinfection under visible light. ACS Sustain. Chem. Eng. 5, 8693–8701 (2017)

    Article  Google Scholar 

  69. S.P. Adhikari, G.P. Awasthi, J. Lee et al., Synthesis, characterization, organic compound degradation activity and antimicrobial performance of g-C3N4 sheets customized with metal nanoparticles-decorated TiO2 nanofibers. RSC Adv. 6, 55079–55091 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeyaperumal Kalyana Sundar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vignesh, S., Muppudathi, A.L. & Sundar, J.K. Multifunctional performance of gC3N4-BiFeO3-Cu2O hybrid nanocomposites for magnetic separable photocatalytic and antibacterial activity. J Mater Sci: Mater Electron 29, 10784–10801 (2018). https://doi.org/10.1007/s10854-018-9144-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9144-7

Navigation