Skip to main content
Log in

Effects of thermal aging on growth behavior of interfacial intermetallic compound of dip soldered Sn/Cu joints

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Intermetallic compounds (IMCs) formations of Sn/Cu reaction couple prepared by dip soldering were studied with isothermal aging at four levels of temperatures (120, 150, 170 and 200 °C, respectively). It is found that an obvious scallop-type layer of Cu6Sn5 IMC formed between the liquid Sn solder and Cu substrates and a planar Cu3Sn IMC layer between Cu6Sn5 IMC layer and Cu substrates appears after solid-state aging treatment. A significant increment of IMC layer thickness is observed with increasing aging time as well as aging temperature. And it is further found that the thickness of IMC layer is linearly related to the square root of aging time during the aging process. The values of growth rate constants for the different solid state aging temperatures (120, 150, 170 and 200 °C) were calculated as 6.578 × 10−18, 1.595 × 10−17, 9.89 × 10−17 and 4.521 × 10−16 m2 s−1, respectively. The apparent activation energy calculated for the growth of the total IMC is 84.43 kJ mol−1. Moreover, The mean diameters of the Cu6Sn5 grains increased linearly with cubic root of aging time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H.W. Yang, J.Y. Wu, Z.X. Zhu, C.R. Kao, Effects of surface diffusion and reaction-induced volume shrinkage on morphological evolutions of micro joints. Mater. Chem. Phys. 191, 13–19 (2017)

    CAS  Google Scholar 

  2. T.L. Yang, J.Y. Wu, C.C. Li, S. Yang, C.R. Kao, Low temperature bonding for high temperature applications by using SnBi solders. J. Alloys Compd. 647(25), 681–685 (2015)

    CAS  Google Scholar 

  3. C. Key Chung, Y.J. Chen, C.C. Li, C.R. Kao, The critical oxide thickness for Pb-free reflow soldering on Cu substrate. Thin Solid Films 520(16), 5346–5352 (2012)

    Google Scholar 

  4. S.C. Yang, C.C. Chang, M.H. Tsai, C.R. Kao, Effect of Cu concentration, solder volume, and temperature on the reaction between SnAgCu solders and Ni. J. Alloys Compd. 499(2), 149–153 (2010)

    CAS  Google Scholar 

  5. M.Y. Tsai, S.C. Yang, Y.W. Wang, C.R. Kao, Grain growth sequence of CuSn in the Cu/Sn and Cu/Sn-Zn systems. J. Alloys Compd. 494(1), 123–127 (2010)

    CAS  Google Scholar 

  6. T.L. Yang, J.J. Yu, W.L. Shih, C.H. Hsueh, C.R. Kao, Effects of silver addition on Cu-Sn microjoints for chip-stacking applications. J. Alloys Compd. 605(12), 193–198 (2014)

    CAS  Google Scholar 

  7. Y.W. Wang, Y.W. Lin, C.T. Tu, C.R. Kao, Effects of minor Fe, Co, and Ni additions on the reaction between SnAgCu solder and Cu. J. Alloys Compd. 478(1), 121–127 (2009)

    CAS  Google Scholar 

  8. C.K. Chung, Y.J. Chen, T.L. Yang, C.R. Kao, Reactions of Sn-4.0Ag-0.5Cu on Cu and electroless Ni substrate in premelting soldering process. J. Electron. Mater. 42(6), 1254–1259 (2013)

    CAS  Google Scholar 

  9. Y.W. Wang, Y.W. Lin, C.R. Kao, Inhibiting the formation of microvoids in CuSn by additions of Cu to solders. J. Alloys Compd. 493(1), 233–239 (2010)

    CAS  Google Scholar 

  10. X. Hu, Y. Li, Y. Liu, Microstructure and shear strength of Sn37Pb/Cu solder joints subjected to isothermal aging. Microelectron. Reliab. 54(8), 1575–1582 (2014)

    Google Scholar 

  11. W. Liu, D.P. Sekulic, Capillary driven molten metal flow over topographically complex substrates. Langmuir 27(11), 6720 (2011)

    CAS  Google Scholar 

  12. W. Liu, Y. Li, Y. Cai, D.P. Sekulic, Capillary rise of liquids over a microstructured solid surface. Langmuir 27(23), 14260 (2011)

    CAS  Google Scholar 

  13. X. Hu, Y. Li, Z. Min, Interfacial reaction and IMC growth between Bi-containing Sn0.7Cu solders and Cu substrate during soldering and aging. J. Alloys Compd. 582(21), 341–347 (2014)

    CAS  Google Scholar 

  14. J. Zhao, L. Qi, X.-M. Wang, L. Wang, Influence of Bi on microstructures evolution and mechanical properties in Sn-Ag-Cu lead-free solder. J. Alloys Compd. 375(1–2), 196–201 (2004)

    CAS  Google Scholar 

  15. P.L. Tu, Y.C. Chan, K.C. Hung, J.K.L. Lai, Growth kinetics of intermetallic compounds in chip scale package solder joint. Scr. Mater. 44(2), 317–323 (2001)

    CAS  Google Scholar 

  16. M.J. Rizvi, Y.C. Chan, C. Bailey, H. Lu, M.N. Islam, Effect of adding 1 wt% Bi into the Sn-2.8Ag-0.5Cu solder alloy on the intermetallic formations with Cu-substrate during soldering and isothermal aging. J. Alloys Compd. 407(1–2), 208–214 (2006)

    CAS  Google Scholar 

  17. X. Hu, T. Xu, L.M. Keer et al., Microstructure evolution and shear fracture behavior of aged Sn3Ag0.5Cu/Cu solder joints. Mater. Sci. Eng. A 673, 167–177 (2016)

    CAS  Google Scholar 

  18. O.Y. Liashenko, S. Lay, F. Hodaj, On the initial stages of phase formation at the solid Cu/liquid Sn-based solder interface. Acta Mater. 117, 216–227 (2016)

    CAS  Google Scholar 

  19. R.A. Gagliano, M.E. Fine, Thickening kinetics of interfacial Cu6Sn5, and Cu3Sn layers during reaction of liquid tin with solid copper. J. Electron. Mater. 32, 1441–1447 (2003)

    CAS  Google Scholar 

  20. J. Bang, D.Y. Yu, Y.H. Ko et al., Intermetallic compound formation and mechanical property of Sn-Cu-xCr/Cu lead-free solder joint. J. Alloys Compd. 728, 992–1001 (2017)

    CAS  Google Scholar 

  21. P.J. Shang, Z.Q. Liu, D.X. Li et al., TEM observations of the growth of intermetallic compounds at the SnBi/Cu interface. J. Electron. Mater. 38, 2579–2584 (2009)

    CAS  Google Scholar 

  22. H. Gu, Interfacial reaction of sn-based solder joint in the package system Master thesis, The University of Texas at Arlington, 2014

  23. F.J. Wang, Z.S. Yu, K. Qi, Intermetallic compound formation at Sn-3.0Ag-0.5Cu-1.0Zn lead-free solder alloy/Cu interface during as-soldered and as-aged conditions. J. Alloys Compd. 438(1–2), 110–115 (2007)

    CAS  Google Scholar 

  24. M. Yang, M. Li, C. Wang, Interfacial reactions of eutectic Sn3.5Ag and pure tin solders with Cu substrates during liquid-state soldering. Intermetallics 25(3), 86–94 (2012)

    CAS  Google Scholar 

  25. X. Hu, Z. Ke, Growth behavior of interfacial Cu-Sn intermetallic compounds of Sn/Cu reaction couples during dip soldering and aging. J. Mater. Sci. 25(2), 936–945 (2014)

    CAS  Google Scholar 

  26. M. Yang, Y.H. Ko, J. Bang et al., Growth inhibition of interfacial intermetallic compounds by pre-coating oriented Cu6Sn5 grains on Cu substrates. J. Alloys Compd. 701, 533–541 (2017)

    CAS  Google Scholar 

  27. M.L. Liu, H. Haliman, A.A. Mohamad, Interfacial reaction of an-3.0Ag-0.5Cu thin film during solder reflow. Solder. Surf. Mt. Technol. 25(1), 15–23 (2013)

    CAS  Google Scholar 

  28. K.N. Tu, K. Zeng, Tin-lead (SnPb) solder reaction in flip chip technology. Mater. Sci. Eng. A 34(1), 1–58 (2001)

    Google Scholar 

  29. T.Y. Lee, W.J. Choi, K.N. Tu et al., Morphology, kinetics, and thermodynamics of solid-state aging of eutectic SnPb and Pb-free solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu. J. Mater. Res. 17(2), 291–301 (2002)

    CAS  Google Scholar 

  30. K.N. Tu, R.D. Thompson, Kinetics of interfacial reaction in bimetallic CuSn thin films. Acta Mater. 30(5), 947–952 (1982)

    CAS  Google Scholar 

  31. X. Hu, T. Xu, X. Jiang et al., Effects of post-reflow cooling rate and thermal aging on growth behavior of interfacial intermetallic compound between SAC305 solder and Cu substrate. Appl Phys A 122(4), 1–10 (2016)

    Google Scholar 

  32. S. Kumar, C.A. Handwerker, M.A. Dayananda, Intrinsic and interdiffusion in Cu-Sn system. J. Phase Equilib. Diffus. 32(4), 309–319 (2011)

    CAS  Google Scholar 

  33. D.G. Kim, S.B. Jung, Interfacial reactions and growth kinetics for intermetallic compound layer between In-48Sn solder and bare Cu substrate. J. Alloys Compd. 386(1), 151–156 (2005)

    CAS  Google Scholar 

  34. C.Y. Lee, K.L. Lin, Preparation of solder bumps incorporating electroless nickel-boron deposit and investigation on the interfacial interaction behaviour and wetting kinetics. J. Mater. Sci. 8(6), 377–383 (1997)

    Google Scholar 

  35. J.W. Yoon, S.B. Jung, Investigation of interfacial reactions between Sn-5Bi solder and Cu substrate. J. Alloys Compd. 359(1–2), 202–208 (2003)

    CAS  Google Scholar 

  36. Q.S. Zhu, Z.F. Zhang, J.K. Shang, Z.G. Wang, Fatigue damage mechanisms of copper single crystal/Sn-Ag-Cu interfaces. Mater. Sci. Eng. A 435–436(11), 588–594 (2006)

    Google Scholar 

  37. M. M.Mita.N. Kajihara.K.Sakamoto Kurokawa, Growth behavior of Ni3Sn4 layer during reactive diffusion between Ni and Sn at solid-state temperatures. Mater. Sci. Eng. A 403(1–2), 269–275 (2005)

    Google Scholar 

  38. L. Zhang, X.Y. Fan, C.W. He et al., Intermetallic compound layer growth between SnAgCu solder and Cu substrate in electronic packaging. J. Mater. Sci. 24(9), 3249–3254 (2013)

    CAS  Google Scholar 

  39. B.L. Chen, G.Y. Li, An investigation of effects of Sb on the intermetallic formation in Sn-3.5Ag-0.7Cu solder joints. IEEE. Trans. Compon. Pack. Technol. 28(3), 534–541 (2005)

    CAS  Google Scholar 

  40. J.W. Yoon, B.L. Chang, D.U. Kim et al., Reaction diffusions of Cu6Sn5, and Cu3Sn intermetallic compound in the couple of Sn-3.5Ag eutectic solder and copper substrate. Met. Mater. Int. 9(2), 193–199 (2003)

    CAS  Google Scholar 

  41. J.W. Yoon, S.B. Jung, Effect of isothermal aging on intermetallic compound layer growth at the interface between Sn-3.5Ag-0.75Cu solder and Cu substrate. J. Mater. Sci. 39(13), 4211–4217 (2004)

    CAS  Google Scholar 

  42. C.B. Lee, J.W. Yoon, S.J. Suh et al., Intermetallic compound layer formation between Sn–3.5mass%Ag BGA solder ball and (Cu, immersion Au/electroless Ni–P/Cu) substrate. J. Mater. Sci. 14(8), 487–493 (2003)

    CAS  Google Scholar 

  43. J.W. Yoon, S.B. Jung, Growth kinetics of Ni3Sn4, and Ni3P layer between Sn–3.5Ag solder and electroless Ni–P substrate. J. Alloys Compd. 376(1), 105–110 (2004)

    CAS  Google Scholar 

  44. H.K. Kim, K.N. Tu, Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening. Phys. Rev. B 53(23), 16027–16033 (1996)

    CAS  Google Scholar 

  45. A.M. Gusak, K.N. Tu, Kinetic theory of flux-driven ripening. Phys. Rev. B 66(11), 115403 (2002)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Nature Science Foundation of China (Nos. 51465039, 51665038, 51765040), Nature Science Foundation of Jiangxi Province (20161BAB206122) and Key project of the natural science foundation of Jiangxi Province (20171ACB21011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowu Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, N., Hu, X., Li, Y. et al. Effects of thermal aging on growth behavior of interfacial intermetallic compound of dip soldered Sn/Cu joints. J Mater Sci: Mater Electron 29, 8863–8875 (2018). https://doi.org/10.1007/s10854-018-8904-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8904-8

Navigation