Skip to main content

Advertisement

Log in

Humic acid-derived graphene–SnO2 nanocomposites for high capacity lithium-ion battery anodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Humic acid obtained from wood, soil, and coal provides a naturally occurring highly oxidized carbonaceous two-dimensional material. Humic acid obtained from Leonardite coal and tin(II) chloride were used to synthesize graphene–SnO2 nanocomposites using scalable, thermal treatment processes. The humic acid-derived graphene–SnO2 nanocomposites showed the presence of graphene sheets with a unique crumpled and wrinkled morphology and SnO2 nanoparticles. The graphene–SnO2 nanocomposites were tested as anodes for lithium-ion batteries and showed high reversible specific capacities (641 mAh g−1). In addition, the graphene–SnO2 nanocomposites also exhibited high capacity retention upon cycling which is attributed to the interaction of SnO2 nanoparticles with the humic acid-derived graphene nanosheets that allows accommodation of highly reversible volumetric changes upon Li-ion insertion/de-insertion within the structure. In comparison, humic acid treated without the incorporation of SnCl2 during the synthesis process resulted in stacking of the nanosheets leading to low surface areas and low specific capacities. The scalable production of graphene nanocomposites from earth-abundant precursors opens up significant opportunities for low-cost and high performance materials for numerous energy storage and conversion devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Bonaccorso, L. Colombo, G.H. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Science 347, 10 (2015)

    Google Scholar 

  2. S. Zhuiykov, E. Kats, Ionics 19, 825 (2013)

    CAS  Google Scholar 

  3. N. Badi, J. Mater. Sci.: Mater. Electron. 27, 10342 (2016)

    CAS  Google Scholar 

  4. H. Liu, J. Huang, C. Xiang, J. Liu, X. Li, J. Mater. Sci.: Mater. Electron. 24, 3640 (2013)

    CAS  Google Scholar 

  5. H. Liu, J. Chen, R. Hu, X. Yang, H. Ruan, Y. Su, W. Xiao, J. Mater. Sci.: Mater. Electron. 27, 3968 (2016)

    CAS  Google Scholar 

  6. A.N. Naveen, P. Manimaran, S. Selladurai, J. Mater. Sci.: Mater. Electron. 26, 8988 (2015)

    CAS  Google Scholar 

  7. Y. Chen, J. Xu, Y. Yang, Y. Zhao, W. Yang, X. He, S. Li, C. Jia, J. Mater. Sci.: Mater. Electron. 27, 2564 (2016)

    CAS  Google Scholar 

  8. A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 1 (2009)

    Google Scholar 

  9. E.-S.M. Duraia, Z. Mansurov, S. Tokmoldin, Vacuum 86, 232 (2011)

    CAS  Google Scholar 

  10. F. Akbar, M. Kolahdouz, S. Larimian, B. Radfar, H. Radamson, J. Mater. Sci.: Mater. Electron. 26, 4347 (2015)

    CAS  Google Scholar 

  11. S. Bykkam, K.V. Rao, R. Naresh kumar, C.S. Chakra, T. Dayakar, J. Mater. Sci.: Mater. Electron. 27, 12574 (2016)

    CAS  Google Scholar 

  12. K. Li, M. Gao, Z. Huang, T. Pan, Y. Lin, J. Mater. Sci.: Mater. Electron. 28, 7468 (2017)

    CAS  Google Scholar 

  13. F. Belliard, P.A. Connor, J.T.S. Irvine, Solid State Ion. 135, 163 (2000)

    CAS  Google Scholar 

  14. Y. Zhao, X. Li, B. Yan, D. Li, S. Lawes, X. Sun, J. Power Sources 274, 869 (2015)

    CAS  Google Scholar 

  15. F. Ye, B. Zhao, R. Ran, Z. Shao, J. Power Sources 290, 61 (2015)

    CAS  Google Scholar 

  16. B. Huang, X. Li, Y. Pei, S. Li, X. Cao, R.C. Masse, G. Cao, Small. 12, 1945 (2016)

    CAS  Google Scholar 

  17. Y. Zhang, J. Xie, S. Zhang, P. Zhu, G. Cao, X. Zhao, Electrochim. Acta 151, 8 (2015)

    CAS  Google Scholar 

  18. S.-M. Paek, E. Yoo, I. Honma, Nano Lett. 9, 72 (2009)

    CAS  Google Scholar 

  19. P. Avouris, C. Dimitrakopoulos, Mater. Today 15, 86 (2012)

    CAS  Google Scholar 

  20. P.F. Hu, H. Wang, Y. Yang, J. Yang, J. Lin, L. Guo, Adv. Mater. 28, 3486 (2016)

    CAS  Google Scholar 

  21. H. Zhu, J. Yin, X. Zhao, C.Y. Wang, X.R. Yang, Chem. Commun. 51, 14708 (2015)

    CAS  Google Scholar 

  22. G.W. Beall, U.S. Patent Application US 8865307 B2 (2014)

  23. E.M. Duraia, G.W. Beall, Superlatt. Microsc. 98, 379 (2016)

    CAS  Google Scholar 

  24. G.W. Beall, E.M. Duraia, Q. Yu, Z. Liu, Physica E 56, 331 (2014)

    CAS  Google Scholar 

  25. E.M. Duraia, G.W. Beall, Sens. Actuator B 220, 22 (2015)

    CAS  Google Scholar 

  26. E.M. Duraia, B. Henderson, G.W. Beall, J. Phys. Chem. Solids 85, 86 (2015)

    CAS  Google Scholar 

  27. C. Powell, G.W. Beall, Curr. Opin. Colloid Interface Sci. 20, 362 (2015)

    CAS  Google Scholar 

  28. D.R. Rolison, J.W. Long, J.C. Lytle, A.E. Fischer, C.P. Rhodes, T.M. McEvoy, M.E. Bourga, A.M. Lubers, Chem. Soc. Rev. 38, 226 (2009)

    CAS  Google Scholar 

  29. J.C. Groen, L.A.A. Peffer, J. Perez-Ramirez, Microporous Mesoporous Mater. 60, 1 (2003)

    CAS  Google Scholar 

  30. M. Sophie, A. Cellot, F. Ribot, C. Sanchez, L. Armelao, L. Gueneau, L. Delattre, J. Mater. Chem. 12, 2396 (2002)

    Google Scholar 

  31. Y.-C. Chen, J.-M. Chen, Y.-H. Huang, Y.-R. Lee, H.C. Shih, Surf. Coat. Technol. 202, 1313 (2007)

    CAS  Google Scholar 

  32. A.N. Fouda, M.E. Shazly, F. El-Tantawy, Rev. Adv. Mater. Sci. 45, 8 (2016)

    CAS  Google Scholar 

  33. S. Myungbeom, E. Park, B.M. Yoo, T.H. Han, H.B. Park, H. Kim, Carbon 110, 79 (2016)

    Google Scholar 

  34. M. Batzill, U. Diebold, Prog. Surf. Sci. 79, 47 (2005)

    CAS  Google Scholar 

  35. A.C. Ferrari, D.M. Basko, Nat. Nanotechnol. 8, 235 (2013)

    CAS  Google Scholar 

  36. E.S.M. Duraia, A. Fahami, G.W. Beall, J. Electron. Mater. 47, 1176 (2018)

    CAS  Google Scholar 

  37. A. Diéguez, A. Romano-Rodríguez, A. Vilà, J.R. Morante, J. Appl. Phys. 90, 1550 (2001)

    Google Scholar 

  38. M.-R. Yang, S.-Y. Chu, R.-C. Chang, Sens. Actuators B 122, 269 (2007)

    CAS  Google Scholar 

  39. A. Dieguez, A. Romano-Rodriguez, A. Vila, J.R. Morante, J. Appl. Phys. 90, 1550 (2001)

    CAS  Google Scholar 

  40. W. Chen, D. Ghosh, S.W. Chen, J. Mater. Sci. 43, 5291 (2008)

    CAS  Google Scholar 

  41. F. Ye, B.T. Zhao, R. Ran, Z.P. Shao, Chem.-Eur. J. 20, 4055 (2014)

    CAS  Google Scholar 

  42. Z. Du, X. Yin, M. Zhang, Q. Hao, Y. Wang, T. Wang, Mater. Lett. 64, 2076 (2010)

    CAS  Google Scholar 

  43. X. Li, X. Meng, J. Liu, D. Geng, Y. Zhang, M.N. Banis, Y. Li, J. Yang, R. Li, X. Sun, M. Cai, M.W. Verbrugge, Adv. Funct. Mater. 22, 1647 (2012)

    CAS  Google Scholar 

  44. G. Wang, X. Shen, J. Yao, J. Park, Carbon 47, 2049 (2009)

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the National Science Foundation PREM (Grant No. DMR-1205670) for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to El-Shazly M. Duraia or Christopher P. Rhodes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2051 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duraia, ES.M., Niu, S., Beall, G.W. et al. Humic acid-derived graphene–SnO2 nanocomposites for high capacity lithium-ion battery anodes. J Mater Sci: Mater Electron 29, 8456–8464 (2018). https://doi.org/10.1007/s10854-018-8858-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8858-x

Navigation