Skip to main content

Advertisement

Log in

Synthesis and optoelectronic properties of conductive nanostructured poly(aniline-co-o-aminophenol) thin film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Poly(aniline-co-o-aminophenol) copolymer (PANoAP) is synthesized based on modified chemical route in highly acidic medium by using ferric chloride as an oxidizing agent in the presence of polyethylene glycol with molecular weight 200 as a surfactant. The chemical structure of resulting PANoAP is characterized by Fourier transform infrared FT-IR and 1HNMR spectroscopy. The morphological analysis was carried out by scanning electron microscope. The resulting copolymer exhibits nanostructured polydispersity. The electrochemical behavior of the copolymer is studied by cyclic voltammetry in 0.2 M H2SO4 solution, at a scan rate of 50 mV s−1. The potentials of oxidative signals of the PANoAP are found to be 0.141, 0.086, − 0.0083 and − 0.176 eV respectively. The reduction of quinoid structure in the copolymer backbone is detected by a broadly cathodic peak at 0.144 V and anodic signal at 0.141 V. Thin film of PANoAP is fabricated by spin coating with a thickness of 70 ± 3 nm. Based on the X-ray diffraction analysis, the PANoAP has crystalline nature depending on the strong interchain hydrogen bonding, and the electrostatic (dipole–dipole) interactions between the copolymer chains. The onset energy band value of the PANoAP thin film is found to be 2.19 eV. In addition, the electrical conductivity of the PANoAP thin film was found to be 6 × 10−2 S cm−1 at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B.C. Sherman, W.B. Euler, R.R. Force, The modern student laboratory: polyaniline-A conducting polymer: electrochemical synthesis and electrochromic properties. J. Chem. Educ. 71, A94 (1994)

    CAS  Google Scholar 

  2. H.S. Nalwa, Handbook of Advanced Electronic and Photonic Materials and Devices: Semiconductors, vol. 1 (Academic Press, Cambridge, 2001)

  3. R. Holze, H. Nalwa, Advanced Functional Molecules and Polymers, vol. 2 (Gordon & Breach, Amsterdam, 2001), p. 171

    Google Scholar 

  4. M.K. Roković, K. Kvastek, V. Horvat-Radošević, L. Duić, Poly(ortho-ethoxyaniline) in corrosion protection of stainless steel. Corros. Sci. 49, 2567–2580 (2007)

    Google Scholar 

  5. P. Manisankar, C. Vedhi, G. Selvanathan, R. Somasundaram, Electrochemical and electrochromic behavior of novel poly(aniline-co-4, 4ʹ-diaminodiphenyl sulfone. Chem. Mater. 17, 1722–1727 (2005)

    CAS  Google Scholar 

  6. C.Y. Wang, V. Mottaghitalab, C.O. Too, G.M. Spinks, G.G. Wallace, Polyaniline and polyaniline–carbon nanotube composite fibres as battery materials in ionic liquid electrolyte. J. Power Sources. 163, 1105–1109 (2007)

    CAS  Google Scholar 

  7. K. Ghanbari, M. Mousavi, M. Shamsipur, Preparation of polyaniline nanofibers and their use as a cathode of aqueous rechargeable batteries. Electrochim. Acta 52, 1514–1522 (2006)

    CAS  Google Scholar 

  8. Y. Zou, L.-X. Sun, F. Xu, Biosensor based on polyaniline–Prussian blue/multi-walled carbon nanotubes hybrid composites. Biosens. Bioelectron. 22, 2669–2674 (2007)

    CAS  Google Scholar 

  9. M. Gerlache, S. Girousi, G. Quarin, J.-M. Kauffmann, Pulsed electrochemical detection of H2O2 on gold. Electrochim. Acta 43, 3467–3473 (1998)

    CAS  Google Scholar 

  10. H. Hu, B.E. Ortíz-Aguilar, L. Hechavarría, Effect of pH value of poly(ethylenimine)–H2SO4 electrolyte on electrochromic response of polyaniline thin films. Opt. Mater. 29, 579–584 (2007)

    Google Scholar 

  11. D. Maia, S. Das Neves, O. Alves, M.-A. De Paoli, Photoelectrochemical measurements of polyaniline growth in a layered material. Electrochim. Acta 44, 1945–1952 (1999)

    CAS  Google Scholar 

  12. H. Huang, Z. Zheng, J. Luo, H. Zhang, L. Wu, Z. Lin, Internal photoemission in polyaniline revealed by photoelectrochemistry. Synth. Met. 123, 321–325 (2001)

    CAS  Google Scholar 

  13. D. Gonçalves, R. Faria, M. Yonashiro, L. Bulhoes, Electrochemical oxidation of o-aminophenol in aqueous acidic medium: formation of film and soluble products. J. Electroanal. Chem. 487, 90–99 (2000)

    Google Scholar 

  14. R. Holze, In situ UV–Vis spectroelectrochemical studies of the copolymerization of o-aminophenol and aniline. Synth. Met. 156, 566–575 (2006)

    Google Scholar 

  15. A.G.C. Márquez, L.M.T. Rodríguez, A.M. Rojas, Synthesis of fully and partially sulfonated polyanilines derived from ortanilic acid: an electrochemical and electromicrogravimetric study. Electrochim. Acta 52, 5294–5303 (2007)

    Google Scholar 

  16. W.-C. Chen, T.-C. Wen, A. Gopalan, Role of anions to influence inductive behavior for poly(2-amino diphenylamine-co-aniline)—an electrochemical impedance spectroscopic analysis. Synth. Met. 130, 61–71 (2002)

    CAS  Google Scholar 

  17. A.H. Gemeay, R.G. El-Sharkawy, I.A. Mansour, A.B. Zaki, Preparation and characterization of polyaniline/manganese dioxide composites and their catalytic activity. J. Colloid Interface Sci. 308, 385–394 (2007)

    CAS  Google Scholar 

  18. A. Karyakin, A. Strakhova, A. Yatsimirsky, Self-doped polyanilines electrochemically active in neutral and basic aqueous solutions: electropolymerization of substituted anilines. J. Electroanal. Chem. 371, 259–265 (1994)

    CAS  Google Scholar 

  19. A.A. Karyakin, I.A. Maltsev, L.V. Lukachova, The influence of defects in polyaniline structure on its electroactivity: optimization of ‘self-doped’polyaniline synthesis. J. Electroanal. Chem. 402, 217–219 (1996)

    Google Scholar 

  20. Y. Wei, R. Hariharan, S.A. Patel, Chemical and electrochemical copolymerization of aniline with alkyl ring-substituted anilines. Macromolecules 23, 758–764 (1990)

    CAS  Google Scholar 

  21. M. Sato, S. Yamanaka, J. Nakaya, K. Hyodo, Electrochemical copolymerization of aniline with o-aminobenzonitrile. Electrochim. Acta 39, 2159–2167 (1994)

    CAS  Google Scholar 

  22. Q. Yang, Y. Zhang, H. Li, Y. Zhang, M. Liu, J. Luo, L. Tan, H. Tang, S. Yao, Electrochemical copolymerization study of o-toluidine and o-aminophenol by the simultaneous EQCM and in situ FTIR spectroelectrochemisty. Talanta 81, 664–672 (2010)

    CAS  Google Scholar 

  23. M. Hosny, N. Nowesser, A.S. Al Hussaini, M. Sh. Zoromba, Doped copolymer of polyanthranilic acid and o-aminophenol (AA-co-OAP): synthesis, spectral characterization and the use of the doped copolymer as precursor of α-Fe2O3 nanoparticles. J. Mol. Struct. 1106, 479–484 (2016)

    CAS  Google Scholar 

  24. R. Srivastava, R. Pandey, P. Venkataramani, Barium Manganate Oxidation in Organic-Synthesis. 1. Oxidation of Aromatic Primary Amines (Council Scientific Industrial Research Publ & Info Directorate, New Delhi, 1981), pp. 995–996

  25. D. Borole, U. Kapadi, P. Kumbhar, D. Hundiwale, Influence of inorganic and organic supporting electrolytes on the electrochemical synthesis of polyaniline, poly(o-toluidine) and their copolymer thin films. Mater. Lett. 56, 685–691 (2002)

    CAS  Google Scholar 

  26. M. Bassyouni, S.A. Gutub, U. Javaid, M. Awais, S. Rehman, S.M.-S. Abdel Hamid, M.H. Abdel-Aziz, A. Abouel-Kasem, H. Shafeek, Assessment and analysis of wind power resource using Weibull parameters. Energy Explor. Exploit. 33, 105–122 (2015)

    Google Scholar 

  27. N.M. Hosny, M. Sh., G. Zoromba, Samir, S. Alghool, Synthesis, structural and optical properties of Eskolaite nanoparticles derived from Cr doped polyanthranilic acid (CrPANA). J. Mol. Struct. 1122, 117–122 (2016)

    CAS  Google Scholar 

  28. M.K. Ram, N. Sarkar, H. Ding, C. Nicolini, Synthesis of controlled copolymerisation of aniline and ortho-anisidine: a physical insight in its Langmuir–Schaefer films. Synth. Met. 123 (2001) 197–206

    CAS  Google Scholar 

  29. L.H. Mascaro, A.N. Berton, L. Micaroni, Electrochemical synthesis of polyaniline/poly-o-aminophenol copolymers in chloride medium. Int. J. Electrochem. (2011). https://doi.org/10.4061/2011/292581

    Article  Google Scholar 

  30. R. Mazeikiene, A. Malinauskas, Electrochemical copolymerization of aniline with m-phenylenediamine. Synth. Met. 92, 259–263 (1998)

    CAS  Google Scholar 

  31. A. Malinauskas, M. Bron, R. Holze, Electrochemical and Raman spectroscopic studies of electrosynthesized copolymers and bilayer structures of polyaniline and poly(o-phenylenediamine). Synth. Met. 92, 127–137 (1998)

    CAS  Google Scholar 

  32. M.Sh.. Zoromba, N.A. El-Ghamaz, A.Z. El-Sonbati, A.A. El-Bindary, M.A. Diab, O. El-Shahat, Conducting polymers .VII. Effect of doping with iodine on the dielectrical and electrical conduction properties of polyaniline. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 46, 1179–1188 (2016)

    CAS  Google Scholar 

  33. M.S. Zoromba, Novel and economic acid-base indicator based on (p-toluidine) oligomer: synthesis; characterization and solvatochromism applications. Spectrochim. Acta Part A 187, 61–67 (2017)

    CAS  Google Scholar 

  34. M.S. Zoromba, M. Abdel-Aziz, Ecofriendly method to synthesize poly(ο-aminophenol) based on solid state polymerization and fabrication of nanostructured semiconductor thin film. Polymer 120, 20–29 (2017)

    CAS  Google Scholar 

  35. S. Mu, Y. Zhang, J. Zhai, The electrochemical copolymerization of aniline with 2, 4-diaminophenol and the electric properties of the resulting copolymer. Electrochim. Acta 54, 3923–3929 (2009)

    CAS  Google Scholar 

  36. T. Nogami, T. Hishida, M. Yamada, H. Mikawa, Y. Shirota, Formations and reactions of o-benzoquinone mono-and di-imines. I. Bull. Chem. Soc. Jpn. 48, 3709–3714 (1975)

    CAS  Google Scholar 

  37. M. Fetizon, V. Balogh, M. Golfier, Oxidations with silver carbonate/celite. V. Oxidations of phenols and related compounds. J. Org. Chem. 36, 1339–1341 (1971)

    CAS  Google Scholar 

  38. F. Hua, E. Ruckenstein, Highly soluble conducting poly(ethylene oxide) grafted at two sites of poly(o-aminobenzyl alcohol). J. Polym. Sci. Part A 42, 4756–4764 (2004)

    CAS  Google Scholar 

  39. S. Kunimura, T. Ohsaka, N. Oyama, Preparation of thin polymeric films on electrode surfaces by electropolymerization of o-aminophenol. Macromolecules 21, 894–900 (1988)

    CAS  Google Scholar 

  40. C. Barbero, J.J. Silber, L. Sereno, Formation of a novel electroactive film by electropolymerization of ortho-aminophenol: study of its chemical structure and formation mechanism. Electropolymerization of analogous compounds. J. Electroanal. Chem. Interfacial Electrochem. 263, 333–352 (1989)

    CAS  Google Scholar 

  41. A. Zhang, C. Cui, Y. Chen, J. Lee, Synthesis and electrochromic properties of poly-o-aminophenol. J. Electroanal. Chem. 373, 115–121 (1994)

    CAS  Google Scholar 

  42. R. Tucceri, C. Barbero, J. Silber, L. Sereno, D. Posadas, Spectroelectrochemical study of poly-o-aminophenol. Electrochim. Acta 42, 919–927 (1997)

    CAS  Google Scholar 

  43. R. Torresi, S.C. de Torresi, C. Gabrielli, M. Keddam, H. Takenouti, Quartz crystal microbalance characterization of electrochemical doping of polyaniline films. Synth. Met. 61, 291–296 (1993)

    CAS  Google Scholar 

  44. M.S. Zoromba, A. Al-Hossainy, M. Abdel-Aziz, Conductive thin films based on poly(aniline-co-o-anthranilic acid)/magnetite nanocomposite for photovoltaic applications. Synth. Met. 231, 34–43 (2017)

    CAS  Google Scholar 

  45. J. Zhang, D. Shan, S. Mu, Chemical synthesis and electric properties of the conducting copolymer of aniline and o-aminophenol. J. Polym. Sci. Part A. 45, 5573–5582 (2007)

    CAS  Google Scholar 

  46. F. Hua, E. Ruckenstein, Copolymers of aniline and 3-aminophenol derivatives with oligo (oxyethylene) side chains as novel water-soluble conducting polymers. Macromolecules 37, 6104–6112 (2004)

    CAS  Google Scholar 

  47. J. Zhang, D. Shan, S. Mu, Electrochemical copolymerization of aniline with m-aminophenol and novel electrical properties of the copolymer in the wide pH range. Electrochim. Acta 51, 4262–4270 (2006)

    CAS  Google Scholar 

  48. U. Javaid, Z.M. Khan, M.B. Khan, M. Bassyouni, S.M.-S. Abdel-Hamid, M.H. Abdel-Aziz, S.W. ul Hasan, Fabrication and thermo-mechanical characterization of glass fiber/vinyl ester wind turbine rotor blade. Compos. Part B 91, 257–266 (2016)

    CAS  Google Scholar 

  49. J. Lambert, H. Shurvell, D. Lightner, R. Cooks, Organic Structural Spectroscopy (Prentice-Hall, Inc., New Jersey, 1998)

    Google Scholar 

  50. M. Liu, Y. Zhang, M. Wang, C. Deng, Q. Xie, S. Yao, Adsorption of bovine serum albumin and fibrinogen on hydrophilicity-controllable surfaces of polypyrrole doped with dodecyl benzene sulfonate—a combined piezoelectric quartz crystal impedance and electrochemical impedance study. Polymer 47, 3372–3381 (2006)

    CAS  Google Scholar 

  51. S. Mu, Poly(aniline-co-o-aminophenol) nanostructured network: electrochemical controllable synthesis and electrocatalysis. Electrochim. Acta 51, 3434–3440 (2006)

    CAS  Google Scholar 

  52. S. Mu, Electrochemical copolymerization of aniline and o-aminophenol. Synth. Met. 143, 259–268 (2004)

    CAS  Google Scholar 

  53. H. Xia, Q. Wang, Ultrasonic irradiation: a novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites. Chem. Mater. 14, 2158–2165 (2002)

    CAS  Google Scholar 

  54. L. Ren, G. Zhang, J. Wang, L. Kang, Z. Lei, Z. Liu, Z. Liu, Z. Hao, Z.h. Liu, Adsorption–template preparation of polyanilines with different morphologies and their capacitance. Electrochim. Acta. 145, 99–108 (2014)

    CAS  Google Scholar 

  55. S. Banerjee, J.P. Saikia, A. Kumar, B. Konwar, Antioxidant activity and haemolysis prevention efficiency of polyaniline nanofibers. Nanotechnology 21, 045101 (2009)

    Google Scholar 

  56. J. Pouget, M. Jozefowicz, A.e..a. Epstein, X. Tang, A. MacDiarmid, X-ray structure of polyaniline. Macromolecules 24, 779–789 (1991)

    CAS  Google Scholar 

  57. J.P. Pouget, M.E. Jozefowicz, A.J. Epstein, X. Tang, A.G. MacDiarmidL, X-ray structure of polyaniline. Macromolecules 24(3), 779–789 (1991)

    CAS  Google Scholar 

  58. C. Saravanan, S. Palaniappan, F. Chandezon, Synthesis of nanoporous conducting polyaniline using ternary surfactant. Mater. Lett. 62, 882–885 (2008)

    CAS  Google Scholar 

  59. G. Thenmozhi, P. Arockiasamy, R.J. Santhi, Isomers of poly aminophenol: chemical synthesis, characterization, and its corrosion protection aspect on mild steel in 1 M HCl. Int. J. Electrochem. (2014). https://doi.org/10.1155/2014/961617

    Article  Google Scholar 

  60. A.F. Al-Hossainy, Synthesis, spectral, thermal, optical dispersion and dielectric properties of nanocrystalline dimer complex (PEPyr–diCd) thin films as novel organic semiconductor. Bull. Mater. Sci. 39, 209–222 (2016)

    CAS  Google Scholar 

  61. V.D. Mote, Y. Purushotham, B.N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6, 6 (2012)

    Google Scholar 

  62. A.M. El Sayed, S. Taha, M. Shaban, G. Said, Tuning the structural, electrical and optical properties of tin oxide thin films via cobalt doping and annealing. Superlattices Microstruct. 95, 1e13 (2016)

    Google Scholar 

  63. C.A. Amarnath, J. Kim, K. Kim, J. Choi, D. Sohn, Nanoflakes to nanorods and nanospheres transition of selenious acid doped polyaniline. Polymer 49, 432–437 (2008)

    CAS  Google Scholar 

  64. J. Albuquerque, L.C. Mattoso, D. Balogh, R. Faria, J. Masters, A. MacDiarmid, A simple method to estimate the oxidation state of polyanilines. Synth. Met. 113, 19–22 (2000)

    CAS  Google Scholar 

  65. H.-Q. Xie, Y.-M. Ma, J.-S. Guo, Secondary doping phenomena of two conductive polyaniline composites. Synth. Met. 123, 47–52 (2001)

    CAS  Google Scholar 

  66. G. Lucovsky, On the photoionization of deep impurity centers in semiconductors. Solid State Commun. 3, 299–302 (1965)

    CAS  Google Scholar 

  67. A. Badr, A. El-Amin, A. Al-Hossainy, Elucidation of charge transport and optical parameters in the newly 1CR-dppm organic crystalline semiconductors. J. Phys. Chem. C 112, 14188–14195 (2008)

    CAS  Google Scholar 

  68. M.D. Giulio, G. Micocci, R. Rella, P. Siciliano, A. Tepore, Optical absorption of tellurium suboxide thin films. Phys. Status Solidi (a). (1993). https://doi.org/10.1002/pssa.2211360236

    Article  Google Scholar 

  69. A.F. Al-Hossainy, A. Ibrahim, Structural, optical dispersion and dielectric properties of novel chromium nickel organic crystalline semiconductors. Mater. Sci. Semicond. Process. 38, 13–23 (2015)

    CAS  Google Scholar 

  70. S. Karadeniz, 60 Co γ-ray irradiation effects on dielectric characteristics of tin oxide films of different thicknesses on n-type Si (111) substrates. Nucl. Instrum. Methods Phys. Res. Sect. B 260, 571–578 (2007)

    CAS  Google Scholar 

  71. B. Barış, H.G. Özdemir, N. Tuğluoğlu, S. Karadeniz, ÖF. Yüksel, Z. Kişnişci, Optical dispersion and dielectric properties of rubrene organic semiconductor thin film. J. Mater. Sci.Mater. Electron. 25, 3586–3593 (2014)

    Google Scholar 

  72. M. Dongol, M. El-Nahass, A. El-Denglawey, A. Elhady, A. Abuelwafa, Optical properties of nano 5, 10, 15, 20-tetraphenyl-21H, 23H-prophyrin nickel (II) Thin Films. Curr. Appl. Phys. 12, 1178–1184 (2012)

    Google Scholar 

  73. A.F. Al-Hossainy, A. Ibrahim, The effects of annealing temperature on the structural properties and optical constants of a novel DPEA-MR-Zn organic crystalline semiconductor nanostructure thin films. Opt. Mater. 73, 138–153 (2017)

    CAS  Google Scholar 

  74. M. Leclerc, G. D’Aprano, G. Zotti, Structure-property relationships in polyaniline derivatives. Synth. Met. 55, 1527–1532 (1993)

    CAS  Google Scholar 

  75. F. Zuo, M. Angelopoulos, A.G. MacDiarmid, A.J. Epstein, Transport studies of protonated emeraldine polymer: a granular polymeric metal system. Phys. Rev. B 36, 3475 (1987)

    CAS  Google Scholar 

  76. M.A. Chougule, S.G. Pawar, P.R. Godse, R.N. Mulik, S. Sen, V.B. Patil, Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci. Lett. 1, 6 (2011)

    CAS  Google Scholar 

  77. A. Kobayashi, H. Ishikawa, K. Amano, M. Satoh, E. Hasegawa, Electrical conductivity of annealed polyaniline. J. Appl. Phys. 74, 296–299 (1993)

    CAS  Google Scholar 

  78. M. Gosh, A. Barman, A. Meikap, S. De, S. Chatterjee, Hopping transport in HCl doped conducting polyaniline. Phys. Lett. A 260, 138–148 (1999)

    CAS  Google Scholar 

  79. Z. Zhao, D. Morel, C. Ferekides, Electrical and optical properties of tin-doped CdO films deposited by atmospheric metalorganic chemical vapor deposition. Thin Solid Films. 413, 203–211 (2002)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed F. Al-Hossainy or Mohamed Sh. Zoromba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slimane, A.B., Al-Hossainy, A.F. & Zoromba, M.S. Synthesis and optoelectronic properties of conductive nanostructured poly(aniline-co-o-aminophenol) thin film. J Mater Sci: Mater Electron 29, 8431–8445 (2018). https://doi.org/10.1007/s10854-018-8856-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8856-z

Navigation