Skip to main content
Log in

Effect of different microwave power applied during microwave assisted radiant heating on the structure, dielectric and electrical properties of Ba0.8 Ca0.2 TiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Microwave assisted radiant heating (MARH) is hybrid sintering technique, where conventional radiant heating is accompanied by precisely controlled different microwave power (Mw) percentages. Lead-free polycrystalline samples of (Ba, Ca) TiO3 BCT ceramics derived from hydrothermal process were synthesized by MARH technique. A systematic study has been carried out to examine the effect of different microwave power (Mw) percentages applied during MARH on the structure, dielectric and electrical properties of BCT samples. Room temperature X-ray diffraction pattern and Raman Scattering spectra revealed formation of single phase tetragonal structure for all the samples and tetragonality increases with increasing Mw power percentages. However, the dielectric permittivity shows maximum increment (ε′ ~ 16,000) for the samples sintered with 30 Mw power percentage. Impedance spectroscopic analysis suggested negative temperature coefficient of resistance (NTCR) behavior with non-Debye type dielectric relaxation. Electrical resistivity also increases with increasing Mw power percentages for all the samples. Samples sintered with 30 Mw power percentage exhibited enhanced dielectric and electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Cai, C.L. Fu, J.C. Gao, C.X. Zhao, Adv. Appl. Ceram. 110, 181 (2011)

    CAS  Google Scholar 

  2. M. Panigrahi, S. Panigrahi, Phys. B 405, 2556 (2010)

    CAS  Google Scholar 

  3. S. Sharma, K. Shamim, A. Ranjan, R. Rai, P. Kumari, S. Sinha, Ceram. Intern. 41, 7713 (2015)

    CAS  Google Scholar 

  4. M.K. Shamim, S. Sharma, A. Singh, R. Rai, R. Rani, J Adv. Diel. 6, 1650035 (2016)

    CAS  Google Scholar 

  5. G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Lv, Chem. Eng. J. 333, 519 (2018)

    CAS  Google Scholar 

  6. G. Wu, Y. Cheng, K. Wang, Y. Wang, A. Feng, J. Mat. Sci.: Mater. Electron. 27, 5592 (2016)

    CAS  Google Scholar 

  7. V.S. Puli, D.K. Pradhan, B.C. Riggs, D.B. Chrisey, R.S. Katiyar, J. Alloys Compd. 584, 369 (2014)

    CAS  Google Scholar 

  8. L. Zhang, X. Wang, W. Yang, H. Liu, X. Yao, J. Appl. Phys. 104, 014104 (2008)

    Google Scholar 

  9. A.D. del Toro, E.G. Pena, Y.L. Ruiz, F.G. Zayas, L. Mestres, D.A.O. Guerrero, J.E. García, Rev. Cuba. Quím. 23, 59 (2011)

    Google Scholar 

  10. B. Asbani, Y. Gagou, J.-L. Dellis, M. Trcek, Z. Kutnjak, M. Amjoud, A. Lahmar, D. Mezzane, M. El Marssi, J. Appl. Phys. 121, 064103 (2017)

    Google Scholar 

  11. S. Urek, M. Drofenik, D. Makovec, J. Mater. Sci. 35, 895 (2000)

    CAS  Google Scholar 

  12. G.H. Heartling, J. Am. Ceram. Soc. 82, 797–818 (1999)

    Google Scholar 

  13. S.S. Ronaldo, M.P. Jean-Claude, L.C. Fontas, A.-C. Hernandes, Mat. Res. 12, 287 (2009)

    Google Scholar 

  14. A. Zeb, S.J. Milne, J. Am. Ceram. Soc. 96, 3701 (2013)

    CAS  Google Scholar 

  15. H. Veenhuis, T. Börger, K. Peithmann, M. Flaspöhler, K. Buse, R. Pankrath, H. Hesse, E. Krätzig, Appl. Phys. B 70(6), 797 (2000)

    CAS  Google Scholar 

  16. C. Shu, D. Reed, T.W. Bu, J. Am. Ceram. Soc. 00, 1 (2018)

    Google Scholar 

  17. B. Asbani, A. Lahmar, M. Amjoud, J.-L. Dellis, Y. Gagou, D. Mezzane, M. El, Marssi, Sup. Lat. Microstruct. 71, 162 (2014)

    CAS  Google Scholar 

  18. G. Singh, V.S. Tiwari, P.K. Gupta, Appl. Phys. Lett. 103, 202903 (2013)

    Google Scholar 

  19. J.R. Dygas, G. Fafilek, M.W. Breiter, Sol. St. Ion. 119, 115 (1999)

    CAS  Google Scholar 

  20. Z.X. Chen, Y. Chen, Y.S. Jiang, J Phys Chem. B 105, 5766 (2001)

    CAS  Google Scholar 

  21. M.T. Buscaliga, V. Buscaliga, M. Viviani, P. Nanni, J. Am. Ceram. Soc. 84, 376 (2001)

    Google Scholar 

  22. U.A. Joshi, S. Yoon, S. Baik, J.S. Lee, J Phys. Chem. B 110, 12249 (2006)

    CAS  Google Scholar 

  23. A. Testino, L. Mitoseriu, V. Buscaliga, M.T. Buscaliga, I. Pallecchi, A.S. Albuquerque, V. Calzona, D. Marre, A.S. Siri, P. Nanni, J Eur. Ceram. Soc. 26, 3031 (2006)

    CAS  Google Scholar 

  24. V.R. Reddy, S.K. Upadhyay, A. Gupta, A.M. Awasthi, S. Hussain, Ceram. Inter. 40, 8333 (2014)

    CAS  Google Scholar 

  25. S.K. Upadhyay, V.R. Reddy, S.M. Gupta, N. Chauhan, A. Gupta, AIP Adv. 5, 047135 (2015)

    Google Scholar 

  26. J. Pokorny, U.M. Pasha, L. Ben, O.P. Thakur, D.C. Sinclair, I.M. Reaney, J. Appl. Phys. 109, 11410–114110 (2011)

    Google Scholar 

  27. L. Cavalcante et al., Chem. Engg. J. 143, 2099 (2008)

    Google Scholar 

  28. S. Yun, X. Wang, J. Li, Z. Xu, Phys. Status Solidi A 206, 303 (2009)

    CAS  Google Scholar 

  29. M.C. Chang, S.C. Yu, J. Mater. Sci. Lett. 19, 1323 (2000)

    CAS  Google Scholar 

  30. M.R. Panigrahi, S. Panigrahi, Physica B 405, 2556 (2010)

    CAS  Google Scholar 

  31. M. Ganguly, S.K. Rout, T.P. Sinha, S.K. Sharma, H.Y. Park, C.W. Ahn, I.W. Kim, J. Alloys Compd. 579, 473 (2015)

    Google Scholar 

  32. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977)

    Google Scholar 

  33. W. Schokley, W.T. Read, Phys. Rev. 87, 835 (1952)

    Google Scholar 

  34. A.R. Hippel, Dielectrics and Wave (Wiley, New York, 1954)

    Google Scholar 

  35. M.K. Shamim, S. Sharma, R.J. Choudhary, J. Mater. Sci.: Mater. Electron. 28, 11609 (2017)

    CAS  Google Scholar 

  36. A.P. Li, X.U. Chen, J.S. Lu, X. Zhu, J. Appl. Phys. 98, 024109 (2005)

    Google Scholar 

  37. Z.A. Yu, L.E. Cross, Phys. Rev. B 62, 228 (2000)

    Google Scholar 

  38. R. Rani, S. Sharma, R. Rai, A. Kholkin, J. Appl. Phys. 110, 104102 (2011)

    Google Scholar 

  39. A.K. Jonsher, J. Phys. D 32, 57 (1999)

    Google Scholar 

  40. K. Funke, Sol. Stat. Chem. 22, 111–115 (1993)

    CAS  Google Scholar 

  41. G. Wu, J. Li, K. Wang, Y. Wang, C. Pan, A. Feng, J. Mat. Sci.: Mater. Electron. 28, 6544 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to thank Dr V R Reddy, Dr V Sathe and Dr Mukul Gupta for MARH sintering, ferroelectric, X-ray Diffraction and RAMAN spectroscopic measurements of UGC-DAE Consortium for Scientific Research Indore Centre, Indore, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Kashif Shamim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Shamim, M.K., Sharma, S. et al. Effect of different microwave power applied during microwave assisted radiant heating on the structure, dielectric and electrical properties of Ba0.8 Ca0.2 TiO3 ceramics. J Mater Sci: Mater Electron 29, 8158–8166 (2018). https://doi.org/10.1007/s10854-018-8821-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8821-x

Navigation