Skip to main content
Log in

Structural variation and near infrared luminescence in Mn5+-doped M2SiO4 (M = Ba, Sr, ca) phosphors by cation substitution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Alkaline earth orthosilicates M2SiO4 (M = Ba, Sr and Ca) phosphors doped with Mn5+ ions have been prepared by the conventional solid-state reaction method. The crystal structures were verified by X-ray diffraction. By varying the host composition from Ba to Ca, the position shifting of photoluminescence emission bands corresponding to the 1E → 3A2 transition are induced by the increasing angular distortion and covalence. The nonradiative energy transfer becomes a dominant role in the photoluminescence process with substituting Ba2+ sites for smaller cations. The structural evolution and relevant luminescence mechanisms in (Ba1−xCax)2SiO4 phosphors also have been investigated in detail. It reveals that the chemical composition modification and structural variation can be an efficient approach to optimize the photoluminescence behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Moncorgé, H. Manaa, G. Boulon, Cr4+ and Mn5+ active centers for new solid state laser materials. Opt. Mater. 4, 139–151 (1994)

    Article  Google Scholar 

  2. H.T. Huang, J.L. He, B.T. Zhang, J.F. Yang, J.L. Xu, C.H. Zuo, X.T. Tao, V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser. Opt. Express. 18, 3352–3357 (2010)

    Article  Google Scholar 

  3. B. Golubovic, B.E. Bouma, G.J. Tearney, J.G. Fujimoto, Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser. Opt. Lett. 22, 1704–1706 (1997)

    Article  Google Scholar 

  4. T. Brunold, M. Herren, U. Oetliker, H.U. Gu¨Del, U. Kesper, C. Albrecht, D. Reinen, Spectroscopy of CrO4 4–, MnO4 3– and FeO4 2–: New (3d)2 luminophores in the NIR., J. Lumin. 60–61, 138–141 (1994)

    Google Scholar 

  5. M.G. Brik, E. Cavalli, R. Borromei, M. Bettinelli, Crystal field parameters and energy level structure of the MnO4 3– tetroxo anion in Li3PO4, Ca2PO4Cl and Sr5(PO4)3Cl crystals. J. Lumin. 129, 801–806 (2009)

    Article  Google Scholar 

  6. J.A. Capobianco, G. Cormier, M. Bettinelli, R. Moncorgé, H. Manaa, Near-infrared intraconfigurational luminescence spectroscopy of the Mn5+ (3d2) ion in Ca2PO4Cl, Sr5(PO4)3Cl, Ca2VO4Cl and Sr2VO4Cl. J. Lumin. 54, 1–11 (1992)

    Article  Google Scholar 

  7. M.F. Hazenkamp, H.U. Güdel, S. Kück, G. Huber, W. Rauw, D. Reinen, Excited state absorption and laser potential of Mn5+-doped Li3PO4. Chem. Phys. Lett. 265, 264–270 (1997)

    Article  Google Scholar 

  8. M. Herren, T. Riedener, H.U. Güdel, C. Albrecht, U. Kaschuba, D. Reinen, Near-infrared luminescence of manganate(V)-doped phosphates and vanadates. J. Lumin. 53, 452–456 (1992)

    Article  Google Scholar 

  9. L.D. Merkle, A. Pinto, H.R. Verdún, B. Mcintosh, Laser action from Mn5+ in Ba3(VO4)2. Appl. Phys. Lett. 61, 2386–2388 (1992)

    Article  Google Scholar 

  10. J.T. Robinson, G. Hong, Y. Liang, B. Zhang, O.K. Yaghi, H. Dai, In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake. J. Am. Chem. Soc. 134, 10664–10669 (2012)

    Article  Google Scholar 

  11. M. Atanasov, H. Adamsky, D. Reinen, Ligand field analysis of Mn5+ in tetra-oxo coordination. Chem. Phys. 202, 155–165 (1996)

    Article  Google Scholar 

  12. M. Herren, H.U. Güdel, C. Albrecht, D. Reinen, High-resolution near-infrared luminescence of mangenese(V) in tetrahedral oxo coordination. Chem. Phys. Lett. 183, 98–102 (1991)

    Article  Google Scholar 

  13. S. Laha, S. Tamilarasan, S. Natarajan, J. Gopalakrishnan, Stabilization of a tetrahedral (Mn5+O4) chromophore in ternary barium oxides as a strategy toward development of new turquoise/green-colored pigments. Inorg. Chem. 55, 3508–3514 (2016)

    Article  Google Scholar 

  14. Y. Han, X. Ye, H. Zhu, Y. Li, X. Kuang, New oxygen-deficient cationic-ordered perovskites containing turquoise-coloring Mn5+O4 tetrahedral layers. J. Solid State Chem. https://doi.org/10.1016/j.jssc.2016.12.020 (2016)

    Google Scholar 

  15. R. Cao, X. Yu, X. Sun, C. Cao, J. Qiu, Near-infrared emission Ba3(PO4)2:Mn5+ phosphor and potential application in vivo fluorescence imaging. Spectrochim. Acta A 128, 671–673 (2014)

    Article  Google Scholar 

  16. U. Oetliker, M. Herren, H.U. Güdel, U. Kesper, C. Albrecht, D. Reinen, Luminescence properties of Mn5+ in a variety of host lattices: effects of chemical and structural variation. J. Chem. Phys. 100, 8656–8665 (1994)

    Article  Google Scholar 

  17. U. Hömmerich, H. Eilers, W.M. Yen, H.R. Verdún, The optical center MnO4 3– in Y2SiO5:Mn, X (X = Al, Ca). Chem. Phys. Lett. 213, 163–167 (1993)

    Article  Google Scholar 

  18. L.C. Ferracin, M.R. Davolos, L.A.O. Nunes, MnO4 3– NIR lminescence in Ba2SiO4. J. Lumin. 72–74, 185–187 (1997)

    Google Scholar 

  19. Z. Xia, S. Miao, M. Chen, M.S. Molokeev, Q. Liu, Structure, crystallographic sites, and tunable luminescence properties of Eu2+ and Ce3+/Li+-activated Ca1.65Sr0.35SiO4 phosphors. Inorg. Chem. 54, 7684–7691 (2015)

    Article  Google Scholar 

  20. S.H.M. Poort, W. Janssen, G. Blasse, Optical properties of Eu2+-activated orthosilicates and orthophosphates. J. Alloys Compd. 260, 93–97 (1997)

    Article  Google Scholar 

  21. L. Zhang, P. Han, K. Wang, Z. Lu, L. Wang, Y. Zhu, Q. Zhang, Enhanced luminescence of Sr2SiO4:Dy3+ by sensitization (Ce3+/Bi3+) and its composition-induced phase transition. J. Alloys Compd. 541, 54–59 (2012)

    Article  Google Scholar 

  22. D. Singh, S. Sheoran, V. Tanwar, S. Bhagwan, Optical characteristics of Eu(III) doped MSiO3 (M = Mg, Ca, Sr and Ba) nanomaterials for white light emitting applications. J. Mater. Sci. Mater. Electron. 28, 1–11 (2016)

    Google Scholar 

  23. D. Singh, S. Sheoran, J. Singh, Optical characterization of Eu3+ doped MLSiO4 (M = Ca, Sr, Ba and L = Mg) phosphor materials for display devices., J. Mater. Sci. Mater. Electron. https://doi.org/10.1007/s10854-017-7916-0 (2017)

    Google Scholar 

  24. D. Singh, S. Sheoran, V. Tanwar, Europium doped silicate phosphors: Synthetic and characterization techniques. Adv. Mater. Lett. 8, 656–672 (2017)

    Article  Google Scholar 

  25. J.S. Kim, P.E. Jeon, J.C. Choi, H.L. Park, Emission color variation of M2SiO4:Eu2+ (M = Ba, Sr, Ca) phosphors for light-emitting diode. Solid State Commun. 133, 187–190 (2005)

    Article  Google Scholar 

  26. J.S. Kim, Y.H. Park, S.M. Kim, J.C. Choi, H.L. Park, Temperature-dependent emission spectra of M2SiO4:Eu2+ (M = Ca, Sr, Ba) phosphors for green and greenish white LEDs. Solid State Commun. 133, 445–448 (2005)

    Article  Google Scholar 

  27. H. Liu, S. Guo, Y. Hao, H. Wang, B. Xu, Luminescent properties of Eu3+ and Sm3+ activated M2SiO4 (M = Ba, Sr and Ca) red-emitting phosphors for WLEDs. J. Lumin. 132, 2908–2912 (2012)

    Article  Google Scholar 

  28. J. Zou, B. Yang, S. Zhu, J. Li, F. Wang, Enhancement of thermal stability and reliability of BaxSr2–xSiO4:Eu2+ phosphors by Ba2+ doping. J. Mater. Sci. Mater. Electron. 27, 13199–13208 (2016)

    Article  Google Scholar 

  29. W. Lv, M. Jiao, Q. Zhao, B. Shao, W. Lu, H. You, Ba1.3Ca0.7SiO4:Eu2+,Mn2+: a promising single-phase, color-tunable phosphor for near-ultraviolet white-light-emitting diodes. Inorg. Chem. 53, 11007–11014 (2014)

    Article  Google Scholar 

  30. F. Wei, Q. Jia, Massive production of A2SiO4:Eu3+ and A2SiO4:Eu2+ (A = Ca, Sr, Ba) microspheres and luminescent properties. Superlattices Microstruct. 82, 11–17 (2015)

    Article  Google Scholar 

  31. S. Zhang, Y. Hu, H. Duan, Y. Fu, M. He, An efficient, broad-band red-emitting Li2MgTi3O8:Mn4+ phosphor for blue-converted white LEDs. J. Alloys Compd. 693, 315–325 (2017)

    Article  Google Scholar 

  32. B. Wang, H. Lin, J. Xu, H. Chen, Y. Wang, CaMg2Al16O27:Mn4+-based red phosphor: a potential color converter for high-powered warm W-LED, ACS Appl. Mater. Interfaces 6, 22905–22913 (2014)

    Article  Google Scholar 

  33. K. Dardenne, D. Vivien, D. Huguenin, Color of Mn(V)-substituted apatites A10((B,Mn)O4)6F2, A = Ba, Sr, Ca; B = P, V. J. Solid State Chem. 146, 464–472 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grants No. 51472091), Guangdong Natural Science Foundation (Grants No. S2011030001349).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianrong Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Nie, J., Liu, S. et al. Structural variation and near infrared luminescence in Mn5+-doped M2SiO4 (M = Ba, Sr, ca) phosphors by cation substitution. J Mater Sci: Mater Electron 29, 6419–6427 (2018). https://doi.org/10.1007/s10854-018-8622-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8622-2

Navigation