Skip to main content

Advertisement

Log in

Antimicrobial, electrochemical and photo catalytic activities of Zn doped Fe3O4 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, we report the synthesis of Fe3O4 and Zn-doped Fe3O4 (Zn/Fe3O4) nanoparticles by a simple co-precipitation method. The morphology, structure and optical properties of the samples are characterized by transmission electron microscopy, X-ray diffraction, UV–visible spectroscopy, Fourier transform infrared spectroscopy, energy dispersive spectroscopy and UV–visible spectroscopy. The antibacterial, electrochemical energy storage and photocatalytic properties of the nanoparticles are studied in detail, and the results are discussed. Antibacterial activity of Fe3O4 and Zn/Fe3O4 nanoparticles are analyzed by disc diffusion method on Gram-negative pathogen Salmonella typhi and Gram-positive pathogen Staphylococcus aureus. Zn/Fe3O4 nanoparticles show a higher zone of inhibition because of having a larger specific surface area than the pure Fe3O4 nanoparticles. The electrochemical energy storage performances of the nanoparticles are tested in a symmetric two-electrode configuration, and the measurement demonstrated that Zn doping nearly doubles the energy storage properties of the Fe3O4 nanoparticles. The study of the photocatalytic degradation of methyl blue (MB) dye under UV irradiation in the presence of pure and doped Fe3O4 nanoparticles reveal that both nanoparticles act as ideal catalysts for degradation of MB dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.El Ghandoor, H.M. Zidan, M.M.H. Khalil, M.I.M. Ismail, Int. J. Electrochem. Sci. 7, 5734 (2012)

    Google Scholar 

  2. I. Vedernikova, A. Koval, A. Fataliyva, J. Chem. Pharm. Res. 5(6), 109–112 (2013)

    CAS  Google Scholar 

  3. Z.H. Zhou, J. Wang, X. Liu, H.S.O. Chan, J. Mater. Chem. 11, 1704 (2001). https://doi.org/10.1039/b100758k

    Article  CAS  Google Scholar 

  4. W.C. Zhan, Y.L. Guo, Y.Q. Wang et al., J. Phys. Chem. C 113, 7181 (2009). https://doi.org/10.1021/jp8101095

    Article  CAS  Google Scholar 

  5. J. Xu, H.B. Yang, W.Y. Fu et al., J. Magn. Magn. Mater. 309, 307 (2007). https://doi.org/10.1016/j.jmmm.2006.07.037

    Article  CAS  Google Scholar 

  6. G. Salazar-Alvarez, M. Muhammed, A.A. Zagorodni, Chem. Eng. Sci. 61, 4625 (2006). https://doi.org/10.1016/j.ces.2006.02.032

    Article  CAS  Google Scholar 

  7. S. Basak, D.R. Chen, P. Biswas, Chem. Eng. Sci. 62, 1263 (2007). https://doi.org/10.1016/j.ces.2006.11.029

    Article  CAS  Google Scholar 

  8. R. Massart, IEEE Trans. Magn. 17, 1247 (1981). https://doi.org/10.1109/TMAG.1981.1061188

    Article  Google Scholar 

  9. Y. Sahoo, H. Pizem, T. Fried et al., Langmuir 17, 7907 (2001). https://doi.org/10.1021/la010703+

    Article  CAS  Google Scholar 

  10. G. Visalakshi, G. Venkateswaran, S.K. Kulshreshtha, P.N. Moorthy, Mater. Res. Bull. 28, 829 (1993). https://doi.org/10.1016/0025-5408(93)90024-8

    Article  CAS  Google Scholar 

  11. Y.S. Kang, S. Risbud, J.F. Rabolt, P. Stroeve, Chem. Mater. 8, 2209 (1996). https://doi.org/10.1021/cm960157j

    Article  CAS  Google Scholar 

  12. J. Tang, M. Myers, K.A. Bosnick, L.E. Brus, J. Phys. Chem. B 107, 7501 (2003). https://doi.org/10.1021/jp027048e

    Article  CAS  Google Scholar 

  13. S.C. Qu, H.B. Yang, D.W. Ren et al., J. Colloid Interface Sci. 215, 190 (1999). https://doi.org/10.1006/jcis.1999.6185

    Article  CAS  Google Scholar 

  14. G.K. Pitman, Bridging Troubled Waters (Assessing The World Bank Water Resources Strategy World Bank Publications, Washington DC, 2002)

    Google Scholar 

  15. A.K. Gupta, M. Gupta, Biomaterials 26, 3995 (2005). https://doi.org/10.1016/j.biomaterials.2004.10.012

    Article  CAS  Google Scholar 

  16. C.C. Berry, A.S.G. Curtis, (2003) J. Phys. D 36, R198. https://doi.org/10.1088/0022-3727/36/13/203

    Article  CAS  Google Scholar 

  17. D. Touati, (2000) Arch. Biochem. Biophys. 373, 1. https://doi.org/10.1006/abbi.1999.1518

    Article  CAS  Google Scholar 

  18. V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 7, 1597 (2014). https://doi.org/10.1039/c3ee44164d

    Article  CAS  Google Scholar 

  19. X. Yang, F. Zhang, L. Zhang, T.F. Zhang, Y. Huang, Y.S. Chen, Adv. Funct. Mater. 23, 3353 (2013). https://doi.org/10.1002/adfm.201203556

    Article  CAS  Google Scholar 

  20. V.D. Nithya, N. Sabari Arul, J. Mater. Chem. A 4, 10767 (2016). https://doi.org/10.1039/C6TA02582J

    Article  CAS  Google Scholar 

  21. Y.X. Zeng, M.H. Yu, Y. Meng, P.P. Fang, X.H. Lu, Y.X. Tong, Adv. Energy Mater. (2016). https://doi.org/10.1002/aenm.201601053

    Article  Google Scholar 

  22. B. Bai, X.L. Yan, G. Li et al., (2016) Nano. https://doi.org/10.1142/s1793292016300036

    Article  Google Scholar 

  23. Y.D. Hu, G. Chen, C.M. Li, Y.G. Yu, J.X. Sun, H.J. Dong, New J. Chem. 39, 2417 (2015). https://doi.org/10.1039/c4nj02132k

    Article  CAS  Google Scholar 

  24. X.B. Zhang, L. Zhang, J.S. Hu, X.H. Huang, RSC Adv. 6, 32349 (2016). https://doi.org/10.1039/c6ra06972j

    Article  CAS  Google Scholar 

  25. F. Yang, N.N. Yan, S. Huang, Q. Sun, L.Z. Zhang, Y. Yu, J. Phys. Chem. C 116, 9078 (2012). https://doi.org/10.1021/jp300939q

    Article  CAS  Google Scholar 

  26. M.M. Rashad, A.A. Ismail, I. Osama, I.A. Ibrahim, A.H.T. Kandil, Arab. J. Chem. 7, 71 (2014). https://doi.org/10.1016/j.arabjc.2013.08.016

    Article  CAS  Google Scholar 

  27. D. Madhan, M. Parthibavarman, P. Rajkumar, M. Sangeetha, J. Mater. Sci.: Mater. Electron. 26, 6823 (2015). https://doi.org/10.1007/s10854-015-3296-5

    Article  CAS  Google Scholar 

  28. D. Maity, D.C. Agrawal, J. Magn. Magn. Mater. 308, 46 (2007). https://doi.org/10.1016/j.jmmm.2006.05.001

    Article  CAS  Google Scholar 

  29. M. Arakha, S. Pal, D. Samantarrai et al., Sci. Rep. (2015). https://doi.org/10.1038/srep14813

    Article  Google Scholar 

  30. Z.Y. Lv, Q. Wang, Y.Z. Bin et al., J. Phys. Chem. C 119, 26128 (2015). https://doi.org/10.1021/acs.jpcc.5b07580

    Article  CAS  Google Scholar 

  31. J. Liu, Y.Z. Bin, M. Matsuo, J. Phys. Chem. C 116, 134 (2012). https://doi.org/10.1021/jp207354s

    Article  CAS  Google Scholar 

  32. B.R. Lawn, J. Mater. Res. 19, 22 (2004)

    Article  CAS  Google Scholar 

  33. Z. Rezay Marand, M. Helmi Rashid Farimani, N. Shahtahmasebi, Nanomed. J. 1, 238 (2014). https://doi.org/10.7508/nmj.2015.04.004

    Article  CAS  Google Scholar 

  34. A. Cabot, V.F. Puntes, E. Shevchenko et al., J. Am. Chem. Soc. 129, 10358 (2007). https://doi.org/10.1021/ja072574a

    Article  CAS  Google Scholar 

  35. C.Y. Haw, C.H. Chia, S. Zakaria et al., Ceram. Int. 37, 451 (2011). https://doi.org/10.1016/j.ceramint.2010.09.010

    Article  CAS  Google Scholar 

  36. S.H. Hosseini, A. Asadnia, Int. J. Phys. Sci. 8, 1209 (2013)

    CAS  Google Scholar 

  37. J.A. Lopez, F. González, F.A. Bonilla, G. Zambrano, M.E. Gómez, Revista Latinoamericana de Metalurgia y Materiales 30, 60 (2010)

    Google Scholar 

  38. A. Jitianu, M. Raileanu, M. Crisan et al., J. Sol-Gel. Sci. Technol. 40, 317 (2006). https://doi.org/10.1007/s10971-006-9321-7

    Article  CAS  Google Scholar 

  39. D. Kotsikau, V. Pankov, E. Petrova, V. Natarov, D. Filimonov, K. Pokholok, J. Phys. Chem. Solids (2017). https://doi.org/10.1016/j.jpcs.2017.11.004

    Article  Google Scholar 

  40. E. Matei, A. Predescu, E. Vasile, A. Predescu, J. Phys. 304, 012022 (2011)

    Google Scholar 

  41. W. Chen, H. Xiao, H. Xu, T. Ding, Y. Gu, Int. J. Photoenergy 2015:7 (2015). https://doi.org/10.1155/2015/591428

    Article  CAS  Google Scholar 

  42. M. Arakha, S. Pal, D. Samantarrai et al., Sci. Rep. 5, 14813 (2015). https://doi.org/10.1038/srep14813

    Article  CAS  Google Scholar 

  43. T. Gordon, B. Perlstein, O. Houbara, I. Felner, E. Banin, S. Margel, (2011) Colloids Surf. A 374, 1. https://doi.org/10.1016/j.colsurfa.2010.10.015

    Article  CAS  Google Scholar 

  44. Y.T. Prabhu, K.V. Rao, B.S. Kumari, V.S.S. Kumar, T. Pavani, Int. Nano Lett. 5, 85 (2015). https://doi.org/10.1007/s40089-015-0141-z

    Article  CAS  Google Scholar 

  45. D.S. Winatapura, S.H. Dewi, W.A. Adi, (2016) Synthesis, characterization, and photocatalytic activity of Fe3O4@ZnO nanocomposite. Int. J. Technol. 7, 408

    Article  Google Scholar 

Download references

Acknowledgements

R. B. Rakhi acknowledges the support of Ramanujan Fellowship, Department of Science and Technology (DST), Govt. of India and CSIR-NIIST Thiruvananthapuram, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. R. Bindhu or R. B. Rakhi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjana, P.M., Bindhu, M.R., Umadevi, M. et al. Antimicrobial, electrochemical and photo catalytic activities of Zn doped Fe3O4 nanoparticles. J Mater Sci: Mater Electron 29, 6040–6050 (2018). https://doi.org/10.1007/s10854-018-8578-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8578-2

Navigation