Skip to main content
Log in

High sensitivity capacitive humidity sensors based on Zn1−xNixO nanostructures and plausible sensing mechanism

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zn1−xNixO (X = 0%, 1%, 3%, 5%, 10%) nanowires were synthesized by the hydrothermal method, and the prepared materials were characterized and analyzed by XRD, SEM and XPS. Then, the materials were positioned on the pre-designed Ti/Au interdigital electrode to fabricate humidity sensors by the dielectrophoresis method. The humidity sensitive characteristics of the sensors were studied by combining complex impedance spectroscopy and theory of multilayer adsorption. The results show that the surface oxygen vacancies concentration can be regulated by Ni doping process. Under the combined action of Ni ions and oxygen vacancies, the performance of humidity sensors has been improved significantly. Especially, 5% Ni doped ZnO humidity sensor shows a high capacitance sensitivity, which is varied by more than four orders of magnitude with increasing the relative humidity from 11 to 95%, respectively. Moreover, the response time and recovery time are reduced to 27 s and 2 s, which is much better than undoped ZnO humidity sensor. The results indicate that the doping of Ni elements play an important role in the sensing property improvement of ZnO humidity sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Z.M. Rittersma, Recent achievements in miniaturised humidity sensors a review of transduction techniques. Sens. Actuators A 96, 196–210 (2002). https://doi.org/10.1016/S0924-4247(01)00788-9

    Article  Google Scholar 

  2. H. Farahani, R. Wagiran, M.N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14, 7881–7939 (2014). https://doi.org/10.3390/s140507881

    Article  Google Scholar 

  3. A. Tripathy, S. Pramanik, J. Cho, J. Santhosh, N. Osman, Role of morphological structure, doping, and coating of different materials in the sensing characteristics of humidity sensors. Sensors 14, 16343–16422 (2014). https://doi.org/10.3390/s140916343

    Article  Google Scholar 

  4. Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, L. Luo, Zinc oxide nanorod and nanowire for humidity sensor. Appl. Surf. Sci. 242, 212–217 (2005). https://doi.org/10.1016/j.apsusc.2004.08.013

    Article  Google Scholar 

  5. S.K. Misra, N.K. Pandey, Analysis on activation energy and humidity sensing application of nanostructured SnO2-doped ZnO material. Sens. Actuators A 249, 8–14 (2016). https://doi.org/10.1016/j.sna.2016.08.012

    Article  Google Scholar 

  6. J.W. Ren, L.S. Yi, C. Chu, Composite of TiO2 nanowires and Nafion as humidity sensor material. Sens. Actuators B 115, 198–204 (2006). https://doi.org/10.1016/j.snb.2005.09.001

    Article  Google Scholar 

  7. R.J. Wu, Y.L. Sun, C.C. Lin, H.W. Chen, M. Chavali, Micro humidity sensors based on ZnO-In2O3 thin films with high performances. Sens. Actuators B 165, 76–81 (2012). https://doi.org/10.1016/j.snb.2005.09.001

    Article  Google Scholar 

  8. N.K. Pandey, K. Tiwari, A. Ro, A. Mishra, A. Govindan, Ag-loaded WO3 ceramic nanomaterials: characterization and humidity sensing studies. Int. J. Appl. Ceram. Technol. 10, 150–159 (2013). https://doi.org/10.1111/j.1744-7402.2011.02720.x

    Article  Google Scholar 

  9. Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys. 16, 829–858 (2004). https://doi.org/10.1088/0953-8984/16/25/R01

    Google Scholar 

  10. S.P. Chang, S.J. Chang, C.Y. Lu, M.J. Li, C.L. Hsu, Y.Z. Chiou, T.J. Hsueh, I.C. Chen, A ZnO nanowire-based humidity sensor. Superlattices Microstruct. 47, 772–778 (2010). https://doi.org/10.1016/j.spmi.2010.03.006

    Article  Google Scholar 

  11. S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4, 1013–1098 (2011). https://doi.org/10.1007/s12274-011-0160-7

    Article  Google Scholar 

  12. D.C. Look, Recent advances in ZnO materials and devices. Mater. Sci. Eng. 80, 383–387 (2001). https://doi.org/10.1016/S0921-5107(00)00604-8

    Article  Google Scholar 

  13. M. Xu, Q. Li, Y. Ma, H. Fan, Ni doped ZnO nanorods gas sensor: enhanced gas-sensing properties, AC and DC electrical behaviors. Sens. Actuators B 199, 403–409 (2014). https://doi.org/10.1016/j.snb.2014.03.108

    Article  Google Scholar 

  14. J.H. He, C.S. Lao, L.J. Chen, D. Davidovic, Z.L. Wang, Large-Scale Ni doped ZnO nanowire arrays and electrical and optical properties. J. Am. Chem. Soc. 127, 16376–16377 (2005). https://doi.org/10.1021/ja0559193

    Article  Google Scholar 

  15. J. Wang, B. Singh, J.H. Park, S. Rathi, I.y. Lee, S. Maeng, H. Joh, C.H. Lee, G.H. Kim, Dielectrophoresis of graphene oxide nanostructures for hydrogen gas sensor at room temperature. Sens. Actuators B 194, 296–302 (2014). https://doi.org/10.1016/j.snb.2013.12.009

    Article  Google Scholar 

  16. B. Yang, Z. Yang, Z. Zhao, Y. Hu, J. Li, The assembly of carbon nanotubes by dielectrophoresis: Insights into the dielectrophoretic nanotube-nanotube interactions. Physica E 56, 117–122 (2014). https://doi.org/10.1016/j.physe.2013.08.034

    Article  Google Scholar 

  17. N.M. Kiasari, P. Servati, Dielectrophoresis-assembled ZnO nanowire oxygen sensors. IEEE Electron. Device Lett. 32, 982–984 (2011). https://doi.org/10.1109/LED.2011.2149492

    Article  Google Scholar 

  18. Y.C. Chang, Ni doped ZnO nanotower arrays with enhanced optical and field emission properties. RSC Adv. 4, 56241–56247 (2014). https://doi.org/10.1039/C4RA10243F

    Article  Google Scholar 

  19. B. Pal, D. Sarkar, P.K. Giri, Structural, optical, and magnetic properties of Ni doped ZnO nanoparticles: correlation of magnetic moment with defect density. Appl. Surf. Sci. 356, 804–811 (2015). https://doi.org/10.1016/j.apsusc.2015.08.163

    Article  Google Scholar 

  20. K.Raja, P.S.Ramesh, D.Geetha, Synthesis, structural and optical properties of ZnO and Ni doped ZnO hexagonal nanorods by Co-precipitation method. Spectrochim. Acta A 120, 19–24 (2014). https://doi.org/10.1016/j.saa.2013.09.103

    Article  Google Scholar 

  21. W. Yu, L.H. Yang, X.Y. Teng, J.C. Zhang, Z.C. Zhang. Influence of structure characteristics on room temperature ferromagnetism of Ni doped ZnO thin films, J. Appl. Phys. 103, 1–69 (2008). https://doi.org/10.1063/1.2903524

    Google Scholar 

  22. A.K. Rana, P. Bankar, Y. Kumar, M.A. More, D.J. Late, P.M. Shirage, Synthesis of Ni doped ZnO nanostructures by low-temperature wet chemical method and their enhanced field emission properties. RSC Adv. 6, 104318–104324 (2017). https://doi.org/10.1039/C6RA21190A

    Article  Google Scholar 

  23. V.D. Mote, Y. Purushotham, B.N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6, 6–10 (2012). https://doi.org/10.1186/2251-7235-6-6

    Article  Google Scholar 

  24. J. Herran, I. Fernandez, E. Ochoteco, G. CabaneroH, l. Grande, The role of water vapour in ZnO nanostructures for humidity sensing at room temperature. Sens. Actuators B 198, 239–242 (2014). https://doi.org/10.1016/j.snb.2014.03.043

    Article  Google Scholar 

  25. P. He, J.R. Brent, H. Ding, J. Yang, D.J. Lewis, P.O. Brien, B. Derby, Fully printed high performance humidity sensors based on two-dimensional materials. Nanoscale 10, 5599–5604 (2018). https://doi.org/10.1039/C7NR08115D

    Article  Google Scholar 

  26. A. Ievtushenko, O. Khyzhuna, I. Shtepliuka, V. Tkachb, V. Lazorenkoa, G. Lashkareva, X-ray photoelectron spectroscopy and auger electron spectroscopy studies of A1-doped ZnO films. Appl. Surf. Sci. 158, 134–140 (2000). https://doi.org/10.1021/ac50016a042

    Article  Google Scholar 

  27. A. Sharma, Y. Kumar, K. Mazumder, A.K. Rana, P.M. Shirage, Controlled Zn1-xNixO nanostructures for an excellent humidity sensor and plausible sensing mechanism. New J. Chem. 42, 374–401 (2018). https://doi.org/10.1039/C7NJ04801G

    Google Scholar 

  28. W. Kim, M. Choi, K. Yong, Generation of oxygen vacancies in ZnO nanorods/films and their effects on gas sensing properties. Sens. Actuators B 209, 989–996 (2015). https://doi.org/10.1016/j.snb.2014.12.072

    Article  Google Scholar 

  29. Z. Ahmad, Q. Zafar, K. Sulaiman, R. Akram, K.S. Karimov, A humidity sensing organic-inorganic composite for environmental monitoring. Sensors 13, 3615–3624 (2013). https://doi.org/10.3390/s130303615

    Article  Google Scholar 

  30. M. Matsuguchi, S. Umeda, Y. Sadaoka, Y. Sakai, Characterization of polymers for a capacitive-type humidity sensor based on water sorption behavior. Sens. Actuators B 49, 179–185 (1998). https://doi.org/10.1016/S0925-4005(98)00117-8

    Article  Google Scholar 

  31. F. Aziz, M.H. Sayyad, K. Sulaiman, B. Majlis, K.S. Karimov, Z. Ahmad, G. Sugandi, Influence of humidity conditions on the capacitive and resistive response of an Al/VOPc/Pt co-planar humidity sensor. Meas. Sci. Technol. 23, 001–014 (2012). https://doi.org/10.1088/0957-0233/23/1/014001

    Google Scholar 

  32. Y. Zhang, B. Fu, K. Liu, Y. Zhang, X. Li, S. Wen, Y. Chen, S. Ruan, Humidity sensing properties of FeCl3-NH2-MIL-125(Ti) composites. Sens. Actuators B 201, 281–285 (2014). https://doi.org/10.1016/j.snb.2014.04.075

    Article  Google Scholar 

  33. V.K. Tomer, N. Thangaraj, S. Gahlot, K. Kailasam, Cubic mesoporous Ag@CN: a high performance humidity sensor. Nanoscale 8, 19794–19803 (2016). https://doi.org/10.1039/C6NR08039A

    Article  Google Scholar 

  34. T. Yang, Y.Z. Yu, L.S. Zhu, Fabrication of silver interdigitated electrodes on polyimide films via surface modification and ion-exchange technique and its flexible humidity sensor application. Sens. Actuators B 208, 327–333 (2015). https://doi.org/10.1016/j.snb.2014.11.043

    Article  Google Scholar 

  35. W.P. Tai, J.H. Oh, Humidity sensing behaviors of nano-crystalline Al-doped ZnO thin films prepared by sol-gel process. J. Mater. Sci. 13, 391–394 (2002). https://doi.org/10.1023/A:1016084309094

    Google Scholar 

  36. R. Schaub, P. Thostrup, N. Lopez, E. Lægsgaard, I. Stensgaard, J.K. Nørskov, F. Besenbacher, Oxygen vacancies as active sites for water dissociation on rutile TiO2 (110). Phys. Rev. Lett. 87, 266104 (2001). https://doi.org/10.1103/PhysRevLett.87.266104

    Article  Google Scholar 

  37. J.H. Anderson, G.A. Parks, The electrical conductivity of silica gel in the presence of adsorbed water. J. Phys. Chem. Lett. 72, 3666–3668 (1968). https://doi.org/10.1021/j100856a051

    Google Scholar 

  38. S. Agarwal, G.L. Sharma, Humidity sensing properties of (Ba, Sr)TiO3 thin films grown by hydrothermal-electrochemical method. Sens. Actuators B 85, 205–211 (2002). https://doi.org/10.1016/S0925-4005(02)00109-0

    Article  Google Scholar 

  39. N. Agmon, The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995). https://doi.org/10.1016/0009-2614(95)00905-J

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61674058, 61604002, 11647023), Shanghai Natural Science Foundation (Grant No. 17ZR1411500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, N., Ye, Z., Kuang, X. et al. High sensitivity capacitive humidity sensors based on Zn1−xNixO nanostructures and plausible sensing mechanism. J Mater Sci: Mater Electron 30, 1724–1738 (2019). https://doi.org/10.1007/s10854-018-0445-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0445-7

Navigation