Skip to main content

Advertisement

Log in

Electronic and optical behaviors of methylammonium and formamidinium lead trihalide perovskite materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Methylammonium (MA) and formamidinium (FA) lead trihalide perovskites, such as MAPbI3, and FAPbI3 materials are propitious contenders for solar cells and photovoltaic functionalities because they illustrate band gaps of about 1.5 eV or more. Herein, we scrutinized the electronic structures and optical features of MAPbI3 and FAPbI3 halide perovskites using full-potential linearized augmented plane-wave calculations. The structural parameters were acquired using the generalized gradient approximation. The FAPbI3 halide perovskite was found to display lower stability than the MAPbI3 material. The total and partial density of states (DOS) were established for these two halide perovskites, in order to reveal the DOS localization for each atomic element by employing the modified Becke–Johnson (TB-mBJ) potential for the exchange–correlation term. The overall optical spectra were also examined over photon energy for these promising systems, involving the dielectric function, absorption coefficient, optical reflectivity, refractive index, and electron energy-loss function. The results of our theoretical investigations are in accordance with the currently published experimental evidence and should be effective in generating novel materials with tremendous functionalities in photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Kojima, M. Ikegami, K. Teshima, T. Miyasaka, Chem. Lett. 41, 397 (2012)

    Article  Google Scholar 

  2. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, J. Huang, Energy Environ. Sci. 7, 2619 (2014)

    Article  Google Scholar 

  3. A. Abate, M. Saliba, D.J. Hollman, S.D. Stranks, K. Wojciechowski, R. Avolio, G. Grancini, A. Petrozza, H.J. Snaith, Nano Lett. 14(6), 3247 (2014)

    Article  Google Scholar 

  4. G.E. Epron, V.M. Burlakov, A. Goriely, H.J. Snaith, ACS Nano 8, 591 (2014)

    Article  Google Scholar 

  5. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Nano Lett., 13, 1764 (2013)

    Article  Google Scholar 

  6. D. Bi, S.J. Moon, L. Haggman, G. Boschloo, L. Yang, E.M.J. Johansson, M.K. Nazeerudin, M. Graetzel, RSC Adv. 3, 18762 (2013)

    Article  Google Scholar 

  7. W. Abu-Laban, L. Etgar, Energy Environ. Sci. 6, 3249 (2013)

    Article  Google Scholar 

  8. J. Shi, J. Dong, S. Lv, Y. Xu, L. Zhu, J. Xiao, X. Xu, H. Wu, D. Li, Q. Meng, Appl. Phys. Lett. 104, 063901 (2014)

    Article  Google Scholar 

  9. G.E. Epron, S.D. Stranks, C. Manelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Energy Environ. Sci. 7, 982 (2014)

    Article  Google Scholar 

  10. S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, G. Cui, Chem. Mater. 26, 1485 (2014)

    Article  Google Scholar 

  11. S. Aharon, B.E. Cohen, L. Etgar, J. Phys. Chem. C118, 17160 (2014)

    Google Scholar 

  12. L. Barnea-Nehoshtan, S. Kirmayer, E. Edri, G. Hodes, D. Cahen, J. Phys. Chem. Lett. 5, 2408 (2014)

    Article  Google Scholar 

  13. Y. Zhao, A.M. Nardes, K. Zhu, J. Phys. Chem. Lett. 5, 490 (2014)

    Article  Google Scholar 

  14. Y. Zhao, K. Zhu, J. Phys. Chem. Lett. 4, 2880 (2013)

    Article  Google Scholar 

  15. M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photonics 8, 506 (2014)

    Article  Google Scholar 

  16. M. Graetzel, Nat. Mater. 13, 838 (2014)

    Article  Google Scholar 

  17. S. Collavini, S.F. Völker, J.L. Delgado, Angew. Chem. Int. Ed. 54(34), 9757 (2015)

    Article  Google Scholar 

  18. R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X.C. Zeng, J. Huang, Adv. Mater. 27, 1912 (2015)

    Article  Google Scholar 

  19. M. Saliba, W. Zhang, V.M. Burlakov, S.D. Stranks, Y. Sun, J.M. Ball, M.B. Johnston, A. Goriely, U. Wiesner, H.J. Snaith, Adv. Funct. Mater. 25, 5038 (2015)

    Article  Google Scholar 

  20. J.P.C. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T.J. Jacobsson, A.R.S. Kandada, S.M. Zakeeruddin, A. Petrozza, A. Abate, M.K. Nazeeruddin, M. Gratzel, A. Hagfeldt, Energy Environ. Sci. 8, 2928 (2015)

    Article  Google Scholar 

  21. S. Yakunin, M. Sytnyk, D. Kriegner, S. Shrestha, M. Richter, G.J. Matt, H. Azimi, C.J. Brabec, J. Stangl, M.V. Kovalenko, W. Heiss, Nat. Photonics 9, 444 (2015)

    Article  Google Scholar 

  22. Li. Hangqian, Li. Shipin, Y. Wang, H. Savari, M. Wang, Z. Chen, Solar Energy 126, 243–251 (2016)

    Article  Google Scholar 

  23. C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Inorg. Chem. 52, 9019–9038 (2013)

    Article  Google Scholar 

  24. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H. Snaith, J. Sci. 338, 643–647 (2012)

    Google Scholar 

  25. H.S. Kim et al., Sci. Rep. 2, 591 (2012)

    Article  Google Scholar 

  26. J. Burschka et al., Nature 499, 316–319 (2013)

    Article  Google Scholar 

  27. M. Liu, M.B. Johnston, H. Snaith, J. Nat. 501, 395–398 (2013)

    Article  Google Scholar 

  28. M. Kato et al., Appl. Phys. 121, 115501 (2017)

    Article  Google Scholar 

  29. B.C. O’Regan et al., J. Am. Chem. Soc. 137, 5087–5099 (2015)

    Article  Google Scholar 

  30. Y.Y. Dang, Y. Liu, Y.X. Sun, D.S. Yuan, X.L. Liu, W.Q. Lu, G.F. Liu, H.B. Xia, X.T. Tao, CrystEngComm 17, 665 (2015)

    Article  Google Scholar 

  31. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 347, 96 (2015)

    Google Scholar 

  32. G.A.H. Wetzelaer, M. Scheepers, A.M. Sempere, C. Momblona, J. Ávila, H.J. Bolink, Adv. Mater. 27, 1837 (2015)

    Article  Google Scholar 

  33. R.K. Misra, S. Aharon, B. Li, D. Mogilyansky, I. Visoly-Fisher, L. Etgar, E.A. Katz, J. Phys. Chem. Lett. 6, 326 (2015)

    Article  Google Scholar 

  34. M.K. Nazeeruddin, H. Snaith, Mrs. Bull. 40, 641 (2015)

    Article  Google Scholar 

  35. K. Korshunova, L. Winterfeld, W.J.D. Beenken, E. Runge, Phys. Status Solidi B 253, 1907 (2016)

    Article  Google Scholar 

  36. J. Shamsi, A.L. Abdelhady, S. Accornero, M. Arciniegas, L. Goldoni, A.R.S. Kandada, A. Petrozza, L. Mann, ACS Energy Lett. 1, 1042 (2016)

    Article  Google Scholar 

  37. S. Yang, Y. Wang, P. Liu, Y.-B. Cheng, H.J. Zhao, H.G. Yang, Nat. Energy 1, 15016 (2016)

    Article  Google Scholar 

  38. Q. Han, S.-H. Bae, P. Sun, Y.-T. Hsieh, Y.M. Yang, Y.S. Rim, H. Zhao, Q. Chen, W. Shi, G. Li, Y. Yang, Adv. Mater. 28, 2253 (2016)

    Article  Google Scholar 

  39. A.A. Zhumekenov, M.I. Saidaminov, M.A. Haque, E. Alarousu, S.P. Sarmah, B. Murali, I. Dursun, X.-H. Miao, A.L. Abdelhady, T. Wu, O.F. Mohammed, O. M. Bakr, ACS Energy Lett. 1, 32 (2016)

    Article  Google Scholar 

  40. S. Bai, N. Cheng, Z. Yu, P. Liu, C. Wang, X.Z. Zhao, Electrochim. Acta 190, 775 (2016)

    Article  Google Scholar 

  41. A.M.A. Leguy et al., Nanoscale 8, 6317 (2016)

    Article  Google Scholar 

  42. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Vienna, 2001)

    Google Scholar 

  43. J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1386 (1997)

    Article  Google Scholar 

  44. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  Google Scholar 

  45. W. Huang, J.S. Manser, P.V. Kamat, S. Ptasinska, Chem. Mater. 28, 303 (2016)

    Article  Google Scholar 

  46. C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Inorg. Chem. 52, 9019 (2013)

    Article  Google Scholar 

  47. P. Lopper et al., J. Phys. Chem. Lett. 6, 66 (2015)

    Article  Google Scholar 

  48. M.T. Weller, O.J. Weber, J.M. Frost, A.J. Walsh, Phys. Chem. Lett. 6, 3209 (2015)

    Article  Google Scholar 

  49. A. Binek, F.C. Hanusch, P. Docampo, T. Bein, J. Phys. Chem. Lett. 6, 1249 (2015)

    Article  Google Scholar 

  50. D. Shi, V. Adinolfi, R. Comin et al., Science 347(6221), 519 (2015)

    Article  Google Scholar 

  51. Y. Wang, T. Sun, D.J. Yang, H.W. Liu, H.M. Zhang, X.D. Yao, H.J. Zhao, Phys. Chem. Chem. Phys. 14, 2333 (2012)

    Article  Google Scholar 

  52. Y. Wang, H.M. Zhang, P.R. Liu, X.D. Yao, H.J. Zhao, RSC Adv. 3, 8777 (2013)

    Article  Google Scholar 

  53. G.E. Eperon et al., Energy Environ. Sci. 7, 982 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support by a grant from the “Research Center of the Female Scientific and Medical Colleges”, Deanship of Scientific Research, King Saud University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Laref.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Ghtami, H., Laref, A. & Laref, S. Electronic and optical behaviors of methylammonium and formamidinium lead trihalide perovskite materials. J Mater Sci: Mater Electron 30, 711–720 (2019). https://doi.org/10.1007/s10854-018-0340-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0340-2

Navigation