Skip to main content
Log in

Conductivity and dielectric relaxations in Bi2O3-doped phospho-vanadate glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work mainly focus on the study of electrical conductivity of the ternary glass system. In this paper electronic conduction in Bi2O3 doped phospho-vanadate glasses are discussed. Electrical conductivity measurements for both ac and dc were carried over a range of frequency (40 Hz to 10 MHz) and temperature (433–500 K). Transition metal ions (TMI) play very important role in the electrical properties of phosphate glasses. Two different valence states present in these TMI determine the electrical properties. In phospho-vanadate glasses conduction mechanism uses small polaron hopping of electrons between V4+ and V5+ states in vanadium glasses. Small polaron hopping between these states describes the investigated glasses are electronic conductors. Variation of different hopping parameters with Bi2O3 mol% and with temperature is discussed. Modifier role of bismuth oxide leading to the enhancement of conductivity of investigated glasses with decreasing concentration of V2O5 mol%. X-ray diffraction technique used to check the glassy nature of the investigated glass system. The Cole–Cole plots depict conduction is single type (electronic). The dc and ac conductivity values were found to increase with increasing Bi2O3 content. Fitting data to Almond type behavior ac conductivity analysis is done. Furthermore study of scaling behavior is also done using stretched exponents. The β values of investigated ternary glasses lie in the range of 0.6–0.62 and seems to be almost constant but for base glass it is 0.68. The dielectric loss (tanδ) values were found to decrease with increasing Bi2O3 content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. F.M. Ezz Eldin, N.A. El Alaiy, Mater. Chem. Phys. 52, 175 (1998)

    Article  CAS  Google Scholar 

  2. H.A.A. Sidek, I.T. Collier, R.N. Hampton, G.A. Sannders, B. Bridge, Philos. Mag. B 59(2), 221 (1989)

    Article  CAS  Google Scholar 

  3. R.J. Barczynski, L. Murawski, Mater. Sci. (Poland) 24(1), 121 (2006)

    Google Scholar 

  4. M.M. El-Deskoky, M.Y. Hassan, Phys. Chem. Glasses 43(1), 1 (2002)

    Google Scholar 

  5. A.M. Milankovic, D.E. Day, B. Santic, Phys. Chem. Glasses 40(2), 69 (1999)

    Google Scholar 

  6. I.A. Gohar, Y.M. Moustafa, A.A. Megahed, E. Mansour, Phys. Chem. Glasses 391, 56 (1998)

    Google Scholar 

  7. R.V. Anavekar, N. Devaraj, J. Ramakrishna, Phys. Chem. Glasses 32(3), 103 (1991)

    CAS  Google Scholar 

  8. N.F. Mott, E.A. Daris, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  9. M. Hossam, Gomaa, J. Non-Cryst. Solids 481, 51–58 (2018)

    Article  CAS  Google Scholar 

  10. Th. Maeder, IMR 58(1), 3–40 (2012)

    Article  CAS  Google Scholar 

  11. I.W. Donald, Inorganic Glasses and Glass-Ceramics: A Review (AWRE, Berkshire, 1984)

    Google Scholar 

  12. C. Stehle, C. Vira, D. Hogan, S. Feller, M. Affatigato, Phys. Chem. Glasses 39(2), 1083–1086 (1998)

    Google Scholar 

  13. M. Imaoka, Proc. Int. Congr. Glass 7, 149–164 (1965)

    Google Scholar 

  14. B.V. Janakirama Rao, Int. Congr. Glass 1965, 101–104 (1965)

    Google Scholar 

  15. H.B. George, C. Vira, C. Stehle, J. Meyer, S. Evers, D. Hogan, S. Fellar, M. Affatigato, Phys. Chem. Glasses 40(06), 326–332 (1999)

    CAS  Google Scholar 

  16. G. Slinsely, A.E. Owen, F.M. Hayatee, J. Non-Cryst. Solids 4, 208 (1978)

    Google Scholar 

  17. N.F. Mott, J. Non-Cryst. Solids 1, 1 (1968)

    Article  CAS  Google Scholar 

  18. A. Ghosh, Phy. Rev. B 41, 3 (1990)

    Google Scholar 

  19. V. Rajendran, N. Palanivelu, B.K. Chaudhuri, K. Goswami, J. Non-Cryst. Solids 320(1–3), 195–209 (2003)

    Article  CAS  Google Scholar 

  20. M. Munakata, S. Iwamoto, Bull. Electrotech. Lab. 24(2), 90 (1960)

    Google Scholar 

  21. V. Kundu, R.L. Dhiman, D.R. Goyal, A.S. Maan, J. Optoelectron. Adv. Mater. 10, 2765 (2008)

    CAS  Google Scholar 

  22. R. Punia, R.S. Kundu, S. Murugavel, N. Kishore, J. App. Phys. 112, 113716 (2012)

    Article  CAS  Google Scholar 

  23. A. Ghosh, B.K. Choudhary, J. Mater. Sci. 22, 2369–2376 (1987)

    Article  CAS  Google Scholar 

  24. B. Sujatha, R. Viswanatha, H. Nagabushana, C.N. Reddy, J. Mater. Res. Technol. 6(1), 7–12 (2017)

    Article  CAS  Google Scholar 

  25. A.S. Hassaien, A.A. Akl, J. Non-Cryst. Solids 487, 28–36 (2018)

    Article  CAS  Google Scholar 

  26. A.S. Hassaien, A.A. Akl, J. Non-Cryst. Solids 432, 471–479 (2016)

    Article  CAS  Google Scholar 

  27. R. Murugaraj, J. Mater. Sci. 42, 10065 (2007)

    Article  CAS  Google Scholar 

  28. A. Ghosh, A. Pan, Phys. Rev. Lett. 84, 2188 (2000)

    Article  CAS  Google Scholar 

  29. S.B. Kolavekar, N.H. Ayachit, V. Pattar, R.V. Anavekar, AIP Conf. Proc. 1731, 070029 (2016)

    Article  CAS  Google Scholar 

  30. I.G. Austin, N.F. Mott, Adv. Phys. 18, 41 (1969)

    Article  CAS  Google Scholar 

  31. J.T. Devreese, Polarons, in Digital Encyclopedia of Applied Physics, ed. by G.L. Trigg (Wiley, New York, 2008)

    Google Scholar 

  32. P. Meenakshi, D.K. Kanchan, S. Poonam, Ionics 16, 797 (2010)

    Article  CAS  Google Scholar 

  33. B. Eraiah, R.V. Anvekar, Phys. Chem. Glasses 42(1), 121 (2001)

    CAS  Google Scholar 

  34. G.B. Devidas, T. Sankrappa, B.K. Chougale, G. Prasad, J. Non-Cryst. Solids 353, 426–434 (2007)

    Article  CAS  Google Scholar 

  35. S. Szu, S.-G. Lu, Physica B 391, 231 (2007)

    Article  CAS  Google Scholar 

  36. S. Sen, A. Ghosh, J. Appl. Phys. 87, 3355 (2000)

    Article  CAS  Google Scholar 

  37. S. Sen, A. Ghosh, J. Appl. Phys. 86, 2078 (2000)

    Article  Google Scholar 

  38. K. Koaira, H. Fuda, S. Shimada, T. Matsushita, A. Tsunashima, Mater. Res. Bull. 19, 1427 (1984)

    Article  Google Scholar 

  39. C.N. Bogomolomolov, E.K. Kudinov, Y.A. Firsov, Sov. Phys. Solid State 9, 2502 (1968)

    Google Scholar 

  40. T. Holstein, Ann. Phys. 8, 343 (1959)

    Article  CAS  Google Scholar 

  41. G.E. Pike, Phys. Rev. B6, 1572 (1972)

    Article  Google Scholar 

  42. S. Kumar, K.J. Rao, Chem. Phys. Lett 387, 91 (2004)

    Article  CAS  Google Scholar 

  43. S.B. Kolavekar, R. Lakshmikantha, N.H. Ayachit, R.V. Anavekar, AIP Conf. Proc. 1536, 627 (2013)

    Article  CAS  Google Scholar 

  44. J.E. Garbarczyk, P. Murawski, M. Wasiucionek, L. Tykarski, R. Bacewicz, A. Aleksiejuk, Solid State Ion. 136, 1077–1083 (2000)

    Article  Google Scholar 

  45. J.L. Souquet, Solid State Ion. 28, 693 (1988)

    Article  Google Scholar 

  46. T. Nishida, Hyperfine Interact. 111, 239 (1998)

    Article  CAS  Google Scholar 

  47. L. Murawski, R.J. Barczynski, Solids State Ion. 176, 2145–2151 (2005)

    Article  CAS  Google Scholar 

  48. A.M. Al-Shukiri, G.D. Khattak, M.A. Salim, J. Mater. Sci. 35, 123 (2000)

    Article  Google Scholar 

  49. D.P. Almond, C. Hunter, A.R. West, J. Mater. Sci. 19, 3236 (1984)

    Article  CAS  Google Scholar 

  50. L. Murawski, Philos. Mag. B 50, L69 (1984)

    Article  CAS  Google Scholar 

  51. M.S. Aziz, A.G. Mostafa, A.M. Youssef, S.M.S. Youssif, Phys. Res. Int. 2011, 1–10 (2011)

    Article  CAS  Google Scholar 

  52. S.O.H.M. Kang, S. Chung, J. Korean Phys. Soc. 31, 664 (1997)

    Google Scholar 

  53. L. Murawaski, C.H. Chung, J.D. Mackenzie, J. Non-Cryst. Solids 32, 91 (1979)

    Article  Google Scholar 

  54. K.K. Som, B.K. Choudhari, Phys. Rev. B41, 1581 (1990)

    Article  Google Scholar 

  55. F. Abdel-Wahab, M.S. Aziz, A.G. Mostafa, E.M. Ahmed, Mater. Sci. Eng. B 134, 1 (2006)

    Article  CAS  Google Scholar 

  56. H. Mori, H. Matsuno, H. Sataka, J. Non-Cryst. Solids 183, 122 (1995)

    Article  CAS  Google Scholar 

  57. M.M. El-Desoky, M.S. Al-Assiri, Mater. Sci. Eng. B 126, 237 (2007)

    Article  CAS  Google Scholar 

  58. A.S. Hassaien, A.A. Akl, J. Non-Cryst. Solids 428, 112–120 (2015)

    Article  CAS  Google Scholar 

  59. M. Sayer, A. Manasingh, Phys. Rev. B 6, 4629 (1972)

    Article  CAS  Google Scholar 

  60. M. Pant, D.K. Kanchan, P. Sharma, Ionics 16, 797 (2010)

    Article  CAS  Google Scholar 

  61. M. Ganguly. M. Harish Bhat, K.J. Rao, Mater. Res. Bull. 34(1011), 1757 (1999)

    Article  Google Scholar 

  62. C.T. Moynihan., L.P. Boeshk, N.L. Labarge, Phys. Chem. Glasses 14, 122 (1973)

    CAS  Google Scholar 

  63. A. Pan, A. Ghosh, Phys. Rev. B 62, 5 (2000)

    Article  Google Scholar 

  64. S. Lanfredi, P.S. Saria, R. Lebullenger, A.C. Hemandes, Solids State Ion. 146, 329 (2002)

    Article  CAS  Google Scholar 

  65. M.G. Pechet, R. Agarwal, Electronic Packaging: Material and their Properties (CRC Press, Boca Raton, 1999)

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to late Dr. R. V. Anavekar, Bangalore University, and Bangalore for his valuable discussions and suggestions. This work is partially supported by BVBCET under “Capacity Building Projects” grants. One of the authors Sangeeta B. Kolavekar thanks KLE Society and Physics Department, B.V.B.C.E.T, Hubli for providing funding and support through TEQIP grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. H. Ayachit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolavekar, S.B., Ayachit, N.H. Conductivity and dielectric relaxations in Bi2O3-doped phospho-vanadate glasses. J Mater Sci: Mater Electron 30, 432–449 (2019). https://doi.org/10.1007/s10854-018-0308-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0308-2

Navigation