Skip to main content
Log in

Dual-axis thermal convective inclinometer based on CNT/PDMS composite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper presents the design, fabrication, and characterization of a novel inclination-angle sensor (inclinometer) using heating and sensing elements based on conductive polydimethylsiloxane (PDMS) composited with carbon nanotubes (CNTs). The inclinometer consists of a PDMS cube-shaped chamber, a CNTs/PDMS composite-based heater, and four CNTs/PDMS composite-based temperature sensors. The working mechanism of this sensor is based on thermal convective sensing theory on the basis of the detection of thermal disturbance caused by inclination-induced convection in a sealed chamber. In order to prepare the conductive CNTs/PDMS composite, toluene was applied as a solvent to facilitate CNT dispersion in PDMS matrix and then was removed by evaporation. The resistive heating and thermal sensing properties of CNT/PDMS composite-based elements were tested and analyzed first. Then, the responses to inclination-angle were monitored and reported. Experimental results demonstrate that the inclinometer can measure dual-axis angular position in the range of 360° with high stability and repeatability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.C. Choi, S.H. Kong, Jpn. J. Appl. Phys. 48, 06FG05 (2009)

    Google Scholar 

  2. J.C. Choi, S.H. Kong, Jpn. J. Appl. Phys. 49, 06GN15 (2010)

    Google Scholar 

  3. S. Habibi, S.J. Cooper, J.M. Stauffer, B. Dutoit, in Position, Location and Navigation Symposium, 2008 IEEE/ION (2008), pp. 232–237

  4. A. Lombardi, M. Ferri, G. Rescio, M. Grassi, P. Malcovati, in Proceedings of the IEEE Sensor (2009), pp. 1967–1970

  5. R. Xu, S. Zhou, W.J. Li, IEEE Sens. J. 12, 1166–1173 (2012)

    Article  Google Scholar 

  6. Y. Shimizu, S. Kataoka, T. Ishikawa, Y.L. Chen, X.G. Chen, H. Matsukuma, W. Gao, Sensors 18, 398 (2018)

    Article  Google Scholar 

  7. N. Barbour, G. Schmidt, IEEE Sens. J. 1, 332–339 (2001)

    Article  Google Scholar 

  8. H. Yu, B. Guo, K. Haridas, T.H. Lin, H.C. Jia, L.T. Ming, T.B. Yee, Appl. Phys. Lett. 101, 1596–1610 (2012)

    Google Scholar 

  9. A.L. Roy, H. Sarkar, A. Dutta, T.K. Bhattacharyya, Sens. Actuators A 210, 77–85 (2014)

    Article  CAS  Google Scholar 

  10. Y. Li, Q. Zheng, Y. Hu, Y. Xu, J. Microelectromech. Syst. 20, 83–94 (2011)

    Article  Google Scholar 

  11. M. Han, Y. Bang, W. Kim, G.S. Lee, D. Jung, Microelectron. Eng. 168, 50–54 (2017)

    Article  CAS  Google Scholar 

  12. R. Zhu, H. Ding, Y. Su, Z. Zhou, Sens. Actuators A 130, 68–74 (2006)

    Article  Google Scholar 

  13. Y. Zhang, W.J. Li, in 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2010 (2010), pp. 789–792

  14. V. Milanović, E. Bowen, M.E. Zaghloul, N.H. Tea, J.S. Suehle, B. Payne, M. Gaitan, Appl. Phys. Lett. 76, 508–510 (2000)

    Article  Google Scholar 

  15. F. Mailly, A. Giani, A. Martinez, R. Bonnot, P. Temple-Boyer, A. Boyer, Sens. Actuators A 103, 359–363 (2003)

    Article  CAS  Google Scholar 

  16. J.K. Lee, J.C. Choi, S.H. Kong, Jpn. J. Appl. Phys. 52, 06GL01 (2013)

    Article  Google Scholar 

  17. Y. Zhang, W.J. Li, O. Tabata, in 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2009 (2009), pp. 1040–1042

  18. Y. Zhang, W.J. Li, IEEE Trans. Nanotechnol. 10, 923–925 (2011)

    Article  Google Scholar 

  19. M. Han, J.K. Kim, G.M. Bae, Y. Bang, G.S. Lee, S.W. Kang, D. Jung, Jpn. J. Appl. Phys. 56, 06GF05 (2017)

    Google Scholar 

  20. C. Chen, Y. Ma, J. Chen, H. San, J. Mater. Sci. 53, 12455–12466 (2018)

    Article  CAS  Google Scholar 

  21. K. Chu, D.J. Yun, D. Kim, H. Park, S.-H. Park, Org. Electron. 15, 2734–2741 (2014)

    Article  CAS  Google Scholar 

  22. C. Yan, J. Wang, P.S. Lee, ACS Nano 9, 2130–2137 (2015)

    Article  CAS  Google Scholar 

  23. Y.X. Qiang, C.H. Zhu, Y. Liu, S. Cui, J. Mater. Sci. Mater. Electron. 29, 6388–6396 (2018)

    Article  CAS  Google Scholar 

  24. K. Chu, D. Kim, Y. Sohn, S. Lee, C. Moon, S. Park, IEEE Electron Device Lett. 34, 668–670 (2013)

    Article  CAS  Google Scholar 

  25. H.C. Neitzert, L. Vertuccio, A. Sorrentino, IEEE Trans. Nanotechnol. 10, 688–693 (2011)

    Article  Google Scholar 

  26. J.S. Hong, J.H. Lee, Y.W. Nam, Carbon 61, 577–584 (2013)

    Article  CAS  Google Scholar 

  27. S. Pyo, J.I. Lee, M.O. Kim, T. Chung, Y. Oh, S.C. Lim, J. Park, J. Kim, J. Micromech. Microeng. 24, 075012 (2014)

    Article  Google Scholar 

  28. S. Gong, Z.H. Zhu, Z. Li, Phys. Chem. Chem. Phys. 19, 5113 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 61574117 and 61274120) and the Natural Science Foundation of Guangdong Province (Grant no. 2018B030311002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haisheng San.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Chen, C., Bin, W. et al. Dual-axis thermal convective inclinometer based on CNT/PDMS composite. J Mater Sci: Mater Electron 29, 18997–19004 (2018). https://doi.org/10.1007/s10854-018-0025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0025-x

Navigation