Skip to main content
Log in

Synthesis of novel silver chromate incorporated copper-metal-organic framework composites with exceptionally high photocatalytic activity and stability

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metal–organic frameworks are potential materials for the development of high performance catalysts. However, photocatalytic use of MOFs for water treatment has remained, by and large, unexplored. Therefore, in this study a novel Ag2CrO4–HKUST-1 photocatalyst was synthesized by a solvothermal route followed by chemical precipitation method. The as synthesized pure and composite photocatalysts were characterized by XRD, FTIR, SEM, TEM, N2-adsorption–desorption isotherms, UV–vis DRS, and Photoluminescence techniques. The Ag2CrO4/HKUST-1 composites were implied for photocatalytic degradation of two azo dyes, Congo Red (CR) and Ponceau BS (PBS) under Uv–vis light irradiation. The Ag2CrO4–HKUST-1 composites not only showed superior photocatalytic ability for CR and PBS degradation but also exhibited good catalyst stability. The photocatalytic performance of Ag2CrO4/HKUST-1 samples with different Ag: Cu molar ratio was investigated to find the optimum Ag2CrO4 content in the Ag2CrO4/HKUST-1 composite. The mechanism for the photocatalytic degradation of CR and PBS over Ag2CrO4/HKUST-1 composites was studied in detail by introducing different scavengers of active species involved in the Photocatalytic oxidation process. It was proposed that Ag2CrO4/HKUST-1 transforms into Ag2CrO4/Ag/HKUST-1 in the early stages of photocatalytic reaction due to the reduction of Ag2CrO4 by photogenerated electrons. The formation of ‘Ag’ nanoparticles on the surface of composite catalyst enhances the photocatalytic degradation of dyes significantly because these ‘Ag’ nanoparticles act as electron traps and promote interfacial charge transfer through the internal charge transmission via Z-scheme pathway. Moreover, Ag2CrO4–HKUST-1 composites did not show any significant loss of activity for CR and PBS degradation during three recycle experiments indicating their high stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.N. Frank, A.J. Bard, J. Am. Chem. Soc. 99, 303–304 (1977)

    Article  Google Scholar 

  2. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)

    Article  Google Scholar 

  3. T.L. Thompson, J.T. Yates Jr., Chem. Rev. 106, 4428–4453 (2006)

    Article  Google Scholar 

  4. A. Mills, S. LeHunte, J. Photochem. Photobiol. A 108, 1–35 (1997)

    Article  Google Scholar 

  5. K. Ayoub, E.D. Van Hullebusch, M. Cassir, A. Bermond, J. Hazard. Mater. 178, 10–28 (2010)

    Article  Google Scholar 

  6. U.G. Akpan, B.H. Hameed, J. Hazard. Mater. 170, 520–529 (2009)

    Article  Google Scholar 

  7. L.J. Murray, M. Dinca, J.R. Long, Chem. Soc. Rev. 38, 1294–1314 (2009)

    Article  Google Scholar 

  8. J.Y. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Chem. Soc. Rev. 38, 1450–1459 (2009)

    Article  Google Scholar 

  9. J.R. Li, R.J. Kuppler, H.C. Zhou, Chem. Soc. Rev. 38, 1477–1504 (2009)

    Article  Google Scholar 

  10. Y. Bai, G.J. He, Y.G. Zhao, C.Y. Duan, D.B. Dang, Q.J. Meng, Chem. Commun. 1530–1532 (2006)

  11. M.C. Das, H. Xu, Z. Wang, G. Srinivas, W. Zhou, Y.F. Yue, V.N. Nesterov, G. Qian, B. Chen, Chem. Commun. 47, 11715–11717 (2011)

    Article  Google Scholar 

  12. F.X. Llabrés i Xamena, A. Corma, H. Garcia, J. Phys. Chem. C 111, 80–85 (2006)

    Article  Google Scholar 

  13. M. Alvaro, E. Carbonell, B. Ferrer, H. Garcia, F. X. Llabrés i Xamena. Chem. Eur. J. 13, 5106–5112 (2007)

    Article  Google Scholar 

  14. L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, Dalton Trans. 42, 13649–13657 (2013)

    Article  Google Scholar 

  15. L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, J. Mater. Chem. A 1, 11473 (2013)

    Article  Google Scholar 

  16. L. Shen, W. Wu, R. Liang, R. Lin, L. Wu, Nanoscale 5, 9374–9382 (2013)

    Article  Google Scholar 

  17. L. Shen, L. Huang, S. Liang, R. Liang, N. Qin, L. Wu, RSC Adv. 4, 2546–2549 (2014)

    Article  Google Scholar 

  18. Y. Fu, D. Sun, Y. Chen, R. Huang, Z. Ding, X. Fu, Z. Li, Angew. Chem. Int. Ed. Engl. 51, 3364–3367 (2012)

    Article  Google Scholar 

  19. P. Mahata, G. Madras, S. Natarajan, J. Phys. Chem. B 110, 13759–13768 (2006)

    Article  Google Scholar 

  20. K.G. Laurier, F. Vermoortele, R. Ameloot, D.E. De Vos, J. Hofkens, M.B. Roeffaers, J. Am. Chem. Soc. 135, 14488–14491 (2013)

    Article  Google Scholar 

  21. R. Liang, L. Shen, F. Jing, W. Wu, N. Qin, R. Lin, L. Wu, Appl. Catal. B Environ. 162, 245–251 (2015)

    Article  Google Scholar 

  22. C. SS, L. SM, C. JPH, W.I.D. O.AG, Science 283(5405), 1148–1150 (1999)

    Article  Google Scholar 

  23. B. Sun, S. Kayal, A. Chakraborty, Energy 76, 419–427 (2014)

    Article  Google Scholar 

  24. W.W. Lestari, M. Adreane, C. Purnawan, H. Fansuri, N. Widiastuti, S.B. Rahardjo, Mater. Sci. Eng. 107, 012030 (2016)

    Google Scholar 

  25. Y. Li, R.T. Yang, J. Am. Chem. Soc. 128(25), 8136–8137 (2006)

    Article  Google Scholar 

  26. O.M. Yaghi, J.L.C. Rowsell, Angew. Chem. Int. Ed. 44(30)), 4670–4679 (2005)

    Google Scholar 

  27. K.Y.A. Lin, Y.T. Hsieh, J. Taiwan Inst. Chem. Eng. 000, 1–6 (2014)

    Google Scholar 

  28. S. Mosleh, M.R. Rahimi, M. Ghaedi, K. Dashtian, S. Hajati, RSC Adv. https://doi.org/10.1039/C6RA10385E

  29. J. Long, S. Wang, Z. Ding, S. Wang, Y. Zhou, L. Huang, X. Wang, Chem. Commun. 48, 11656–11658 (2012)

    Article  Google Scholar 

  30. R. Lin, L. Shen, Z. Ren, W. Wu, Y. Tan, H. Fu, J. Zhang, L. Wu, Chem. Commun. 50, 8533–8535 (2014)

    Article  Google Scholar 

  31. S. Mosleh, M.R. Rahimi, M. Ghaedi, K. Dashtian, S. Hajati, S. Wang, Chem. Eng. Process. 114, 24–38 (2017)

    Article  Google Scholar 

  32. J. Luo, X.S. Zhou, L. Ma, X.Y. Xu, J.X. Wu, H.P. Liang, Mater. Res. Bull. 77, 291–299 (2016)

    Article  Google Scholar 

  33. D.F. Xu, B. Cheng, S.W. Cao, J.G. Yu, Appl. Catal. B 164, 380–388 (2015)

    Article  Google Scholar 

  34. L.F. Zhu, D.Q. Huang, J.F. Ma, D.R. Wu, M.R. Yang, S. Komarneni, Ceram. Int. 41, 12509–12513 (2015)

    Article  Google Scholar 

  35. J. Lu, X. Zhou, L. Ma, X. Xu, App. Surf. Sci. 390, 357–367 (2016)

    Article  Google Scholar 

  36. H. Wu, J.M. Simmons, Y. Liu, C.M. Brown, X.S. Wang, S. Ma, V.K. Peterson, P.D. Southon, C.J. Kepert, H.C. Zhou, T. Yildirim, W. Zhou, Chemistry 16, 5205–5214 (2016)

    Article  Google Scholar 

  37. F.F. Soofivand, F. Mohandes, M. Salavati-Niasari, Mater. Res. Bull. 48, 2084–2094 (2013)

    Article  Google Scholar 

  38. D. Xu, S. Cao, J. Zhang, B. Cheng, J. Yu, J. Nanotechnol. 5, 658–666 (2014)

    Google Scholar 

  39. J. Luo, X.S. Zhou, L. Ma, X.Y. Xu, H.T. Ruan, Z.B. Zhang, RSC Adv. 6, 52627–52635 (2016)

    Article  Google Scholar 

  40. J. Cao, B. Xu, H. Lin, B. Luo, S. Chen, Chem. Eng. J. 185–186, 91–99 (2012)

    Article  Google Scholar 

  41. S. Lin, Z. Song, G. Che, A. Ren, P. Li, C. Liu, J. Zhang, Micropor. Mesopor. Mater. 193, 27–34 (2014)

    Article  Google Scholar 

  42. X. Yan, S. Komarneni, Z. Zhang, Z. Yan, Micropor. Mesopor. Mater. 183, 69–73 (2014)

    Article  Google Scholar 

  43. L. Peng, J. Zhang, J. Li, B. Han, Z. Xue, B. Zhang, J. Shi, G. Yang, J Colloid Interface Sci. 416, 198–204 (2013)

    Article  Google Scholar 

  44. M. Pirhashemi, A.H. Yangjeh, J. Mater. Sci. 27, 4098–4108 (2016)

    Google Scholar 

  45. M. Maes, M. Trekels, M. Boulhout, S. Schouteden, F. Vermoortele, L. Alaerts et al., Angew. Chem. Int. Ed. 50, 4210–4214 (2011)

    Article  Google Scholar 

  46. Y.P. Liu, P. Chen, Y. Chen, H.D. Lu, J.X. Wang, Z.S. Yang, Z.H. Lu, M. Li, RSC Adv. 6, 10802–10809 (2016)

    Article  Google Scholar 

  47. J.S. Hu, W.J. An, H. Wang, J.P. Geng, W.Q. Cui, Y. Zhan, RSC Adv. 6, 29554–29562 (2016)

    Article  Google Scholar 

  48. M. Yan, Y.L. Wu, F.F. Zhu, Y.Q. Hua, W.D. Shi, Phys. Chem. Chem. Phys. 18, 3308–3315 (2016)

    Article  Google Scholar 

  49. H. Xu, J. Yan, Y. Xu, Y. Song, H. Li, J. Xia, C. Huang, H. Wan, Appl. Catal. B 129, 182–193 (2013)

    Article  Google Scholar 

  50. J. Lu, I. Do, L.T. Drzal, R.M. Worden, I. Lee, ACS Nano 2, 1825–1832 (2008)

    Article  Google Scholar 

  51. D. Wang, L. Guo, Y. Zhen, L. Yue, G. Xue, F. Fu, J. Mater. Chem. A 2, 11716–11727 (2014)

    Article  Google Scholar 

  52. J. Yang, R.S. Hu, W.W. Meng, Y.F. Du, Chem. Commun. 52, 2620–2623 (2016)

    Article  Google Scholar 

  53. L. Shi, L. Liang, F. Wang, M. Liu, J. Sun, Dalton Trans. 53, 269–271 (2016)

    Google Scholar 

  54. X. Wang, S. Li, Y. Ma, H. Yu, J. Yu, J. Phys. Chem. C 115, 14648–14655 (2011)

    Article  Google Scholar 

  55. A.J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solutions, CRC Press, New York, 1985

    Google Scholar 

  56. H. Katsumata, T. Sakai, T. Suzuki, S. Kaneco, Ind. Eng. Chem. Res. 53, 8018–8025 (2014)

    Article  Google Scholar 

  57. X.P. Xiao, J.H. Wei, Y. Yang, R. Xiong, C.X. Pan, J. Shi, ACS Sustain. Chem. Eng. 4, 3017–3023 (2016)

    Article  Google Scholar 

  58. H. Katsumata, T. Hayashi, M. Taniguchi, T. Suzuki, S. Kaneco, Mater. Res. Bull. 63, 116–122 (2015)

    Article  Google Scholar 

  59. J.J. Li, Y.L. Xie, Y.J. Zhong, Y. Hu, J. Mater. Chem. A 3, 5474–5481 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Owais Mehraj thanks Science and Engineering Research Board, Department of Science and Technology, India for the award of SERB- N-PDF grant (PDF /2016/000684). Feroz Ahmad Sofi thanks MHRD, Delhi, India for providing financial assistance. The authors are also highly thankful to Department of Chemistry NIT, Srinagar and central research facility NIT Srinagar for providing the instrumentation facility. SAIF Cochin, Kerala is also acknowledged for providing instrumentation facility for sample analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Owais Mehraj or Kowsar Majid.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehraj, O., Sofi, F.A., Moosvi, S.K. et al. Synthesis of novel silver chromate incorporated copper-metal-organic framework composites with exceptionally high photocatalytic activity and stability. J Mater Sci: Mater Electron 29, 3358–3369 (2018). https://doi.org/10.1007/s10854-017-8271-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8271-x

Navigation