Skip to main content
Log in

The structure, defects, electrical and magnetic properties of BiFe1−x Zr x O3 multiferroic ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BiFe1−x Zr x O3 (x = 0.00–0.30) ceramics were synthesized using solid state reaction method followed by rapid liquid phase sintering, and the microstructure, electrical and magnetic properties of the synthesized ceramics were systematically investigated. The XRD patterns show that no impurity phases exist in Zr doped samples; Zr doping induces the crystal structure distortion when x ≤ 0.10, and a structural phase transition occurs when the content of Zr varies from 0.10 to 0.20. SEM observations indicate that the average grain size is remarkably decreased by Zr doping. Positron annihilation lifetime spectra results indicate that cation vacancy-type defects exist in all samples, the cation vacancy concentration increases with increasing Zr content from 0.00 to 0.20, and then decreases with further increase of Zr content. Electrical and magnetic measurements show that enhanced leakage, ferroelectric and magnetic properties are observed in Zr doped ceramics. The analysis of microstructure and properties show that the cation vacancy defect plays an important role in modulating the electrical and magnetic properties of BiFeO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Ma, J.M. Hu, Z. Li, C.M. Nan, Adv. Mater. 23, 1062 (2011)

    Article  Google Scholar 

  2. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  Google Scholar 

  3. G.H. Jaffari, A. Samad, A.M. Iqbal, S. Hussain, A. Mumtaz, M.S. Awan, M. Siddique, S.I. Shah, J. Alloys Compd. 644, 893 (2015)

    Article  Google Scholar 

  4. G.F. Cheng, Y.J. Ruan, W. Liu, X.S. Wu, Phys. B 468–469, 81 (2015)

    Article  Google Scholar 

  5. P.C. Sati, M. Arora, S. Chauhan, S. Chhoker, M. Kumar, J. Appl. Phys. 112, 094102 (2012)

    Article  Google Scholar 

  6. K. Kalantari, I. Sterianou, S. Karimi, M.C. Ferrarelli, S. Miao, D.C. Sinclair, I.M. Reaney, Adv. Funct. Mater. 21, 3737 (2011)

    Article  Google Scholar 

  7. A.F. Hegab, I.S. Ahmed Farag, A.M. EL Shabiny, A.M. Nassaar, A.A. Ramadan, A.M. Moustafa, J. Mater. Sci. 28, 14460 (2017)

    Google Scholar 

  8. Y. Ma, W.Y. Xing, J.Y. Chen, Y.L. Bai, S.F. Zhao, H. Zhang, Appl. Phys. A 122, 63 (2016)

    Article  Google Scholar 

  9. A. Sathiya Priya, I.B. Shameem Banu, Z. Mohammed, J. Mater. Sci. 28, 8467 (2017)

    Google Scholar 

  10. C.M. Raghavan, D. Do, J.W. Kim, W.J. Kim, S.S. Kim, J. Am. Ceram. Soc. 95, 1933 (2012)

    Article  Google Scholar 

  11. K.S. Kumar, J. Ayyappan, C. Venkateswaran, Mater. Res. Bull. 65, 224 (2015)

    Article  Google Scholar 

  12. M. Arora, S. Chauhan, P.C. Sati, M. Kumar, S. Chhoker, R.K. Kotnala, J. Mater. Sci. 25, 4286 (2014)

    Google Scholar 

  13. X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005)

    Article  Google Scholar 

  14. J.J. Xie, C.D. Feng, X.H. Pan, Y. Liu, Ceram. Int. 40, 703 (2014)

    Article  Google Scholar 

  15. T. Matsui, E. Taketani, H. Tsuda, N. Fujimura, K. Morii, Appl. Phys. Lett. 86, 082902 (2005)

    Article  Google Scholar 

  16. S. Mukherjee, R. Gupta, A. Garg, V. Bansal, S. Bhargava, J. Appl. Phys 107, 123535 (2010)

    Article  Google Scholar 

  17. J. Wei, R. Haumont, R. Jarrier, P. Berhtet, B. Dkhil, Appl. Phys. Lett. 96, 102509 (2010)

    Article  Google Scholar 

  18. J. Wei, D.S. Xue, Appl. Surf. Sci. 258, 1373 (2011)

    Article  Google Scholar 

  19. M. Arora, S. Chauhan, P.C. Sati, M. Kumar, J. Supercond. Nov. Magn. 27, 1867 (2014)

    Article  Google Scholar 

  20. D.J. Keeble, R.A. Mackie, W. Egger, B. Lowe, P. Pikart, C. Hugenschmidt, T.J. Jackson, Phys. Rev. B 81, 064102 (2010)

    Article  Google Scholar 

  21. J.H. Hadley, F.H. Hsu, E.R. Vance, B.D. Beggw, J. Am. Ceram. Soc. 88, 246 (2005)

    Article  Google Scholar 

  22. M. Latkowska, M. Baranowski, W.M. Linhart, F. Janiaka, J. Misiewicz, N. Segercrantz, F. Tuomisto, Q. Zhuang, A. Krier, R. Kudrawiec, J. Phys. D 49, 115105 (2016)

    Article  Google Scholar 

  23. G. Panzarasa, S. Aghion, G. Soliveri, G. Consolati, R. Ferragut, Nanotechnology 27, 02LT03 (2016)

    Article  Google Scholar 

  24. L. Sedivy, J. Cizek, E. Belas, R. Grill, O. Melikhova, Sci. Rep. 6, 20641 (2016)

    Article  Google Scholar 

  25. H.F. He, X.F. Li, Z.Q. Chen, Y. Zheng, D.W. Yang, X.F. Tang, J. Phys. Chem. C 118, 22389 (2014)

    Article  Google Scholar 

  26. P. Banerjee, A. Franco Jr., J. Mater. Sci. 27, 6053 (2016)

    Google Scholar 

  27. C.A. Wang, H.Z. Pang, A.H. Zhang, X.B. Lu, X.S. Gao, M. Zeng, J.M. Liu, Mater. Res. Bull. 70, 595 (2015)

    Article  Google Scholar 

  28. T. Li, J. Chen, D.W. Liu, Z.X. Zhang, Z.P. Chen, Z.X. Li, X.Z. Cao, B.Y. Wang, Ceram. Int. 40, 9061 (2014)

    Article  Google Scholar 

  29. M. Muneeswaran, R. Dhanalakshmi, N.V. Giridharan, Ceram. Int. 41, 8511 (2015)

    Article  Google Scholar 

  30. S. Zhang, L. Wang, Y. Chen, D. Wang, Y. Yao, Y. Ma, J. Appl. Phys. 111, 074105 (2012)

    Article  Google Scholar 

  31. Y.H. Gu, Y. Wang, F. Chen, H.L.W. Chan, W.P. Chen, J. Appl. Phys. 108, 094112 (2010)

    Article  Google Scholar 

  32. P.C. Juan, C.L. Sun, C.H. Liu, C.L. Lin, F.C. Mong, J.H. Huang, H.S. Chang, Microelectron. Eng. 109, 142 (2013)

    Article  Google Scholar 

  33. Y. Li, J. Yu, J. Li, C. Zheng, Y. Wu, Y. Zhao, M. Wang, Y. Wang, J. Mater. Sci. 22, 323 (2011)

    Google Scholar 

  34. X.Z. Wang, H.R. Liu, B.W. Yan, J. Eur. Ceram. Soc. 29, 1183 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 11775192, 11305142, 11675149), National Natural Science and Henan Province United Foundation of China (No.U1204601) and Key Members of the Outstanding Young Teacher of Henan Province and Zhengzhou University of Light Industry (No. 2015GGJS-185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. P. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H.Y., Gu, L.T., Xie, X.Y. et al. The structure, defects, electrical and magnetic properties of BiFe1−x Zr x O3 multiferroic ceramics. J Mater Sci: Mater Electron 29, 2275–2281 (2018). https://doi.org/10.1007/s10854-017-8143-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8143-4

Navigation