Skip to main content
Log in

Shape-controlled synthesis of nickel–cobalt–sulfide with enhanced electrochemical activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Morphology control of electrode material is critical for high performance supercapacitors. The synthesis of shape-controlled materials is helpful to design advanced electrode materials for supercapacitors. Herein, we prepared two types of NiCo2S4 with nano-bud and nano-mesh morphologies under hydrothermal conditions by facile controlling the reaction time. These materials display morphology-dependent electrochemical activity. Electrochemical measurements showed that the nano-mesh-like NiCo2S4 demonstrate the superior pseudocapacitive performance with a high specific capacitance (3.00 F cm−2 or 1250 F g−1 at 2 mA cm−2) and a favorable rate capability (77.8% from 2 to 25 mA cm−2). Moreover, the specific capacitance remains 80% of its initial value after 5000 cycles even at high current density of 20 mA cm−2. The mesh-like NiCo2S4 also displays a low overpotentials of 299 mV at the current density of 30 mA cm−2, showing better performance in electrochemical oxygen evolution reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, Chem. Soc. Rev. 44, 7484–7539 (2015)

    Article  Google Scholar 

  2. H. Chen, J. Jiang, L. Zhang, H. Wan, T. Qi, D. Xia, Nanoscale 5, 8879–8883 (2013)

    Article  Google Scholar 

  3. M. Sun, J. Tie, G. Cheng, T. Lin, S. Peng, F. Deng, F. Ye, L. Yu, J. Mater. Chem. A 3, 1730–1736 (2015)

    Article  Google Scholar 

  4. J. Yin, H. Zhang, J. Luo, M. Yao, W. Hu, J. Mater. Sci.: Mater. Electron. 28, 2093–2099 (2016)

    Google Scholar 

  5. Y.M. Zhang, Y.W. Sui, J.Q. Qi, P.H. Hou, F.X. Wei, Y.Z. He, Q.K. Meng, Z. Sun, J. Mater. Sci.: Mater. Electron. 28, 5686–5695 (2016)

    Google Scholar 

  6. R. Ding, H. Gao, M. Zhang, J. Zhang, X. Zhang, RSC Adv. 5, 48631–48637 (2015)

    Article  Google Scholar 

  7. S. Chen, H.C. Chen, M.Q. Fan, C. Li, K.Y. Shu, J. Sol-Gel Sci. Techol. 80, 119–125 (2016)

    Article  Google Scholar 

  8. H. Chen, J. Jiang, Y. Zhao, L. Zhang, D. Guo, D. Xia, J. Mater. Chem. A 3, 428–437 (2015)

    Article  Google Scholar 

  9. Y. Zhu, X. Ji, Z. Wu, Y. Liu, Electrochim. Acta 186, 562–571 (2015)

    Article  Google Scholar 

  10. F. Deng, L. Yu, M. Sun, T. Lin, G. Cheng, B. Lan, F. Ye, Electrochim. Acta 133, 382–390 (2014)

    Article  Google Scholar 

  11. S. Peng, L. Yu, M. Sun, G. Cheng, T. Lin, Y. Mo, Z. Li, J. Power Sources 296, 237–244 (2015)

    Article  Google Scholar 

  12. Z. Ai, Z. Hu, Y. Liu, M. Yao, ChemPlusChem 81, 322–328 (2016)

    Article  Google Scholar 

  13. J. Xiao, L. Wan, S. Yang, F. Xiao, S. Wang, Nano Lett. 14, 831–838 (2014)

    Article  Google Scholar 

  14. Z. Lv, Q. Zhong, Z. Zhao, Y. Bu, J. Mater. Sci.: Mater. Electron. (2017). doi:10.1007/s10854-017-7750-4

    Google Scholar 

  15. L. Shen, J. Wang, G. Xu, H. Li, H. Dou, X. Zhang, Adv. Energy Mater. 5, 1400977 (2015)

    Article  Google Scholar 

  16. W. Chen, C. Xia, H.N. Alshareef, ACS Nano 8, 9531–9541 (2014)

    Article  Google Scholar 

  17. J.C. Liang, P. Sun, G.Y. Chen, W.X. Zhang, K.Y. Zhou, W.Z. Zhang, J.A. Liu, Z.P. Zhang, M. Zhou, W. Hou, F. Niu, J. Mater. Sci.: Mater. Electron. 28, 14646–14654 (2017)

    Google Scholar 

  18. L. Shen, L. Yu, H.B. Wu, X.Y. Yu, X. Zhang, X.W. Lou, Nat. Commun. 6, 6694 (2015)

    Article  Google Scholar 

  19. L. Yu, L. Zhang, H.B. Wu, X.W. Lou, Angew. Chem. Int. Ed. 53, 3711–3714 (2014)

    Article  Google Scholar 

  20. L.G. Beka, X. Li, W.H. Liu, J. Mater. Sci.: Mater. Electron. 27, 10894–10904 (2016)

    Google Scholar 

  21. Y. Zhang, M. Ma, J. Yang, C. Sun, H. Su, W. Huang, X. Dong, Nanoscale 6, 9824–9830 (2014)

    Article  Google Scholar 

  22. L. Hou, H. Hua, R. Bao, Z. Chen, C. Yang, S. Zhu, G. Pang, L. Tong, C. Yuan, X. Zhang, ChemPlusChem 81, 557–563 (2016)

    Article  Google Scholar 

  23. X.H. Xiong, G. Waller, D. Ding, D.C. Chen, B. Rainwater, B.T. Zhao, Z.X. Wang, M.L. Liu, Nano Energy 16, 71–80 (2015)

    Article  Google Scholar 

  24. T.Y. Wei, C.H. Chen, H.C. Chien, S.Y. Lu, C.C. Hu, Adv. Mater. 22, 347–351 (2010)

    Article  Google Scholar 

  25. Y. Xue, Z. Zuo, Y. Li, H. Liu, Small 13, 1700936 (2017)

    Article  Google Scholar 

  26. Z. Wang, J. Li, X. Tian, X. Wang, Y. Yu, K.A. Owusu, L. He, L. Mai, ACS Appl. Mater. Interfaces 8, 19386–19392 (2016)

    Article  Google Scholar 

  27. J. Jiang, C. Yan, X. Zhao, H. Luo, Z. Xue, T. Mu, Green Chem. 19, 3023–3031 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Scientific Program of Guangdong Province (2014A010106030, 2016A010104017, 2016B020241003, 2016B090930004), the Foundation of Higher Education of Guangdong Province (2015KTSCX027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1178 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tie, J., Peng, S., Diao, G. et al. Shape-controlled synthesis of nickel–cobalt–sulfide with enhanced electrochemical activity. J Mater Sci: Mater Electron 29, 2251–2258 (2018). https://doi.org/10.1007/s10854-017-8140-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8140-7

Navigation