Skip to main content
Log in

Synthesis of SrFe12O19/SiO2/TiO2 composites with core/shell/shell nano-structure and evaluation of their photo-catalytic efficiency for degradation of methylene blue

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The SrFe12O19/SiO2/TiO2 nanostructures with hard magnetic core were successfully synthesized through the facile and efficient wet chemical processes. At first, nanocrystalline strontium hexaferrite (SrFe12O19) powder was prepared using a new co-precipitation route in ethanol/water media. In the next step, SrFe12O19/SiO2 composites were produced by well-known Stöber method using tetraethyl orthosilicate as precursor. Finally titania was coated on SrFe12O19/SiO2 composite particles using titanium n-butoxide precursor. The core/shell/shell nanostructures have been characterized by means of X-ray diffraction, vibrating sample magnetometer, Fourier transform infrared spectra, field emission scanning electron microscopy, and transmission electron microscopy equipped with an energy-dispersive X-ray spectroscopy detector. The catalytic activity of SrFe12O19/SiO2/TiO2 composites has been investigated in the degradation of methylene blue dye under UV illumination. The results indicated that the obtained SrFe12O19/SiO2/TiO2 composite has photo-catalytic properties and can be retrieved by magnetic separation. The photo-degradation of methylene blue dye was about 80% in the presence of photo-catalyst powder at irradiation time of 180 min. Recycled composite particles could be used again.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.S. Lucas, J.A. Peres, Degradation of Reactive Black 5 by Fenton/UV-C and ferrioxalate/H2O2/solar light processes. Dyes Pigm. 74, 622–629 (2007)

    Article  Google Scholar 

  2. Z. Aksu, Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 40, 997–1026 (2005)

    Article  Google Scholar 

  3. W. Somasiri, X.-F. Li, W.-Q. Ruan, C. Jian, Evaluation of the efficacy of upflow anaerobic sludge blanket reactor in removal of colour and reduction of COD in real textile wastewater. Bioresour. Technol. 99, 3692–3699 (2008)

    Article  Google Scholar 

  4. T. Sauer, G.C. Neto, H. Jose, R. Moreira, Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. J. Photochem. Photobiol. A 149, 147–154 (2002)

    Article  Google Scholar 

  5. D. Zhang, G. Li, C.Y. Jimmy, Inorganic materials for photocatalytic water disinfection. J. Mater. Chem. 20, 4529–4536 (2010)

    Article  Google Scholar 

  6. N. Barka, M. Abdennouri, M.E. Makhfouk, Removal of methylene blue and eriochrome Black T from aqueous solutions by biosorption on Scolymus hispanicus L.: Kinetics, equilibrium and thermodynamics. J. Taiwan Inst. Chem. Eng. 42, 320–326 (2011)

    Article  Google Scholar 

  7. R.-S. Juang, W.-C. Huang, Y.-H. Hsu, Treatment of phenol in synthetic saline wastewater by solvent extraction and two-phase membrane biodegradation. J. Hazard. Mater. 164, 46–52 (2009)

    Article  Google Scholar 

  8. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review. Water Res. 44, 2997–3027 (2010)

    Article  Google Scholar 

  9. Y. Sakatani, D. Grosso, L. Nicole, C. Boissière, AA de Soler-Illia, C. Sanchez, Optimised photocatalytic activity of grid-like mesoporous TiO2 films: effect of crystallinity, pore size distribution, and pore accessibility. J. Mater. Chem. 16, 77–82 (2006)

    Article  Google Scholar 

  10. V. Tizjang, M. Montazeri-Pour, M. Rajabi, M. Kari, S. Moghadas, Surface modification of sol–gel synthesized TiO2 photo-catalysts for the production of core/shell structured TiO2–SiO2 nano-composites with reduced photo-catalytic activity. J. Mater. Sci.: Mater. Electron. 26, 3008–3019 (2015)

    Google Scholar 

  11. A. Dodd, A. McKinley, M. Saunders, T. Tsuzuki, Effect of particle size on the photocatalytic activity of nanoparticulate zinc oxide. J. Nanopart. Res. 8, 43 (2006)

    Article  Google Scholar 

  12. S. Rana, J. Rawat, R. Misra, Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: TiO2–NiFe2O4 biomaterial system. Acta Biomater. 1, 691–703 (2005)

    Article  Google Scholar 

  13. N. Bouanimba, R. Zouaghi, N. Laid, T. Sehili, Factors influencing the photocatalytic decolorization of Bromophenol blue in aqueous solution with different types of TiO2 as photocatalysts. Desalination 275, 224–230 (2011)

    Article  Google Scholar 

  14. Z. Teng, X. Su, G. Chen, C. Tian, H. Li, L. Ai, G. Lu, Superparamagnetic high-magnetization composite microspheres with Fe3O4@SiO2 core and highly crystallized mesoporous TiO2 shell. Colloids Surf. A 402, 60–65 (2012)

    Article  Google Scholar 

  15. M. Montazeri-Pour, N. Riahi-Noori, A. Mehdikhani, Synthesis of single-phase anatase TiO2 nanoparticles by hydrothermal treatment with application potential for photoanode electrodes of dye sensitized solar cells. J Ceram Process Res 14, 595–600 (2013)

    Google Scholar 

  16. S. Kang, L. Zhang, C. Liu, L. Huang, H. Shi, L. Cui, Hydrogen peroxide activated commercial P25 TiO2 as efficient visible-light-driven photocatalyst on dye degradation. Int. J. Electrochem. Sci. 12, 5284–5293 (2017)

    Article  Google Scholar 

  17. B. Bhanvase, T. Shende, S. Sonawane, A review on graphene–TiO2 and doped graphene–TiO2 nanocomposite photocatalyst for water and wastewater treatment. Environ. Technol. Rev. 6, 1–14 (2017)

    Article  Google Scholar 

  18. L. Guo, Z. Li, K. Marcus, S. Navarro, K. Liang, L. Zhou, P.D. Mani, S.J. Florczyk, K.R. Coffey, N. Orlovskaya, Periodically patterned Au–TiO2 heterostructures for photoelectrochemical sensor. ACS Sens. (2017). doi:10.1021/acssensors.7b00251

    Google Scholar 

  19. L. Guo, K. Liang, K. Marcus, Z. Li, L. Zhou, P.D. Mani, H. Chen, C. Shen, Y. Dong, L. Zhai, Enhanced photoelectrocatalytic reduction of oxygen using Au@ TiO2 plasmonic film. ACS Appl. Mater. Interfaces 8, 34970–34977 (2016)

    Article  Google Scholar 

  20. Z. Wang, L. Shen, S. Zhu, Synthesis of core-shell Fe3O4@SiO2@TiO2 microspheres and their application as recyclable photocatalysts. Int. J. Photoenergy (2012). doi:10.1155/2012/202519

    Google Scholar 

  21. Q. Yuan, N. Li, W. Geng, Y. Chi, X. Li, Preparation of magnetically recoverable Fe3O4@SiO2@meso-TiO2 nanocomposites with enhanced photocatalytic ability. Mater. Res. Bull. 47, 2396–2402 (2012)

    Article  Google Scholar 

  22. D. Beydoun, R. Amal, G.K.-C. Low, S. McEvoy, Novel photocatalyst: titania-coated magnetite. Activity and photodissolution. J Phys. Chem. B 104, 4387–4396 (2000)

  23. Y. Gao, B. Chen, H. Li, Y. Ma, Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties. Mater. Chem. Phys. 80, 348–355 (2003)

    Article  Google Scholar 

  24. S. Watson, D. Beydoun, R. Amal, Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core. J. Photochem. Photobiol. A 148, 303–313 (2002)

    Article  Google Scholar 

  25. J. Wang, J. Yang, X. Li, B. Wei, D. Wang, H. Song, H. Zhai, X. Li, Synthesis of Fe3O4@SiO2@ZnO–Ag core–shell microspheres for the repeated photocatalytic degradation of rhodamine B under UV irradiation. J. Mol. Catal. A 406, 97–105 (2015)

    Article  Google Scholar 

  26. A. Xia, C. Zuo, L. Chen, C. Jin, Y. Lv, Hexagonal SrFe12O19 ferrites: hydrothermal synthesis and their sintering properties. J. Magn. Magn. Mater. 332, 186–191 (2013)

    Article  Google Scholar 

  27. M. Montazeri-Pour, A. Ataie, Synthesis of nanocrystalline barium ferrite in ethanol/water media. J. Mater. Sci. Technol. 25, 465 (2009)

    Google Scholar 

  28. A. Ataie, M. Montazeri-Pour, Formation mechanism of BaFe12O19 nanoparticles processed via wet chemical route using mixed solvent. Int. J. Nanosci. 10, 1083–1086 (2011)

    Article  Google Scholar 

  29. H. Stäblein, in Ferromagnetic Materials: A Handbook on Properties of Magnetically Ordered Substances, ed. by E. P. Wohlfarth. Hard ferrites and plastoferrites (North-Holland, Amsterdam, 1982), pp. 441–602

    Google Scholar 

  30. X. Huang, G. Wang, M. Yang, W. Guo, H. Gao, Synthesis of polyaniline-modified Fe3O4/SiO2/TiO2 composite microspheres and their photocatalytic application. Mater. Lett. 65, 2887–2890 (2011)

    Article  Google Scholar 

  31. J. Li, L. Gao, Q. Zhang, R. Feng, H. Xu, J. Wang, D. Sun, C. Xue, Photocatalytic property of Fe3O4/SiO2/TiO2 core-shell nanoparticle with different functional layer thicknesses. J. Nanomater. (2014). doi:10.1155/2014/986809

    Google Scholar 

  32. H. Liu, Z. Jia, S. Ji, Y. Zheng, M. Li, H. Yang, Synthesis of TiO2/SiO2@Fe3O4 magnetic microspheres and their properties of photocatalytic degradation dyestuff. Catal. Today 175, 293–298 (2011)

    Article  Google Scholar 

  33. Y. Chi, Q. Yuan, Y. Li, L. Zhao, N. Li, X. Li, W. Yan, Magnetically separable Fe3O4@SiO2@TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity. J. Hazard. Mater. 262, 404–411 (2013)

    Article  Google Scholar 

  34. X. Meng, Y. Zhu, S. Xu, T. Liu, Facile synthesis of shell–core polyaniline/SrFe12O19 composites and magnetic properties. RSC Adv. 6, 4946–4949 (2016)

    Article  Google Scholar 

  35. M. Kari, M. Montazeri-Pour, M. Rajabi, V. Tizjang, S. Moghadas, Maximum SiO2 layer thickness by utilizing polyethylene glycol as the surfactant in synthesis of core/shell structured TiO2–SiO2 nano-composites. J. Mater. Sci: Mater. Electron. 25, 5560–5569 (2014)

    Google Scholar 

  36. S. Xing, Z. Zhou, Z. Ma, Y. Wu, Characterization and reactivity of Fe3O4/FeMnOx core/shell nanoparticles for methylene blue discoloration with H2O2. Appl. Catal. B, 107, 386–392 (2011)

    Article  Google Scholar 

  37. M. Abbas, B.P. Rao, V. Reddy, C. Kim, Fe3O4/TiO2 core/shell nanocubes: single-batch surfactantless synthesis, characterization and efficient catalysts for methylene blue degradation. Ceram. Int. 40, 11177–11186 (2014)

    Article  Google Scholar 

  38. J. Zou, Y.-G. Peng, Y.-Y. Tang, A facile bi-phase synthesis of Fe3O4@SiO2 core–shell nanoparticles with tunable film thicknesses. RSC Adv. 4, 9693–9700 (2014)

    Article  Google Scholar 

  39. K. Kamiya, T. Yoko, K. Tanaka, M. Takeuchi, Thermal evolution of gels derived from CH3Si(OC2H5)3 by the sol-gel method. J. Non-Cryst. Solids 121, 182–187 (1990)

    Article  Google Scholar 

  40. R.F.S. Lenza, W.L. Vasconcelos, Synthesis of titania-silica materials by sol-gel. Mater. Res. 5, 497–502 (2002)

    Article  Google Scholar 

  41. K. Guan, B. Lu, Y. Yin, Enhanced effect and mechanism of SiO2 addition in super-hydrophilic property of TiO2 films. Surf. Coat. Technol. 173, 219–223 (2003)

    Article  Google Scholar 

  42. H. Zhang, R. Hou, Z.-L. Lu, X. Duan, A novel magnetic nanocomposite involving anatase titania coating on silica-modified cobalt ferrite via lower temperature hydrolysis of a water-soluble titania precursor. Mater. Res. Bull. 44, 2000–2008 (2009)

    Article  Google Scholar 

  43. C.U. Ingemar Odenbrand, S. Lars, T. Andersson, L.A.H. Andersson, J.G.M. Brandin, G. Busca, Characterization of silica-titania mixed oxides. J. Catal. 125, 541–553 (1990)

    Article  Google Scholar 

  44. Y. Zhao, L. Xu, Y. Wang, C. Gao, D. Liu, Preparation of Ti–Si mixed oxides by sol–gel one step hydrolysis. Catal. Today 93, 583–588 (2004)

    Article  Google Scholar 

  45. B. Cui, H. Peng, H. Xia, X. Guo, H. Guo, Magnetically recoverable core–shell nanocomposites γ-Fe2O3@SiO2@TiO2–Ag with enhanced photocatalytic activity and antibacterial activity. Sep. Purif. Technol. 103, 251–257 (2013)

    Article  Google Scholar 

  46. Y.-H. Deng, C.-C. Wang, J.-H. Hu, W.-L. Yang, S.-K. Fu, Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids Surf. A 262, 87–93 (2005)

    Article  Google Scholar 

  47. V. Belessi, D. Lambropoulou, I. Konstantinou, R. Zboril, J. Tucek, D. Jancik, T. Albanis, D. Petridis, Structure and photocatalytic performance of magnetically separable titania photocatalysts for the degradation of propachlor. Appl. Catal. B 87, 181–189 (2009)

    Article  Google Scholar 

  48. M. Montazeri-Pour, A. Ataie, R. Nikkhah-Moshaie, Synthesis of Nano-Crystalline Barium Hexaferrite Using a Reactive Co-Precipitated Precursor. IEEE Trans. Magn. 44, 4239–4242 (2008)

    Article  Google Scholar 

  49. H. Hamad, M. Abd El-Latif, A.E.-H. Kashyout, W. Sadik, M. Feteha, Synthesis and characterization of core-shell-shell magnetic (CoFe2O4-SiO2-TiO2) nanocomposites and TiO2 nanoparticles for the evaluation of photocatalytic activity under UV and visible irradiation. New J. Chem. 39, 3116–3128 (2015)

    Article  Google Scholar 

  50. J.-W. Lee, K. Hong, W.-S. Kim, J. Kim, Effect of HPC concentration and ultrasonic dispersion on the morphology of titania-coated silica particles. J. Ind. Eng. Chem. 11, 609–614 (2005)

    Google Scholar 

  51. S.C. Pang, S.Y. Kho, S.F. Chin, Fabrication of magnetite/silica/titania core-shell nanoparticles. J. Nanomater. (2012). doi:10.1155/2012/427310

    Google Scholar 

  52. W. Fu, H. Yang, Q. Yu, J. Xu, X. Pang, G. Zou, Preparation and magnetic properties of SrFe12O19/SiO2 nanocomposites with core–shell structure. Mater. Lett. 61, 2187–2190 (2007)

    Article  Google Scholar 

  53. D. Beydoun, R. Amal, G. Low, S. McEvoy, Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide. J. Mol. Catal. A 180, 193–200 (2002)

    Article  Google Scholar 

  54. D. Greene, R. Serrano-Garcia, J. Govan, and Y. K. Gun’ko, Synthesis characterization and photocatalytic studies of cobalt ferrite-silica-titania nanocomposites. Nanomaterials 4, 331–343 (2014)

    Article  Google Scholar 

  55. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 114, 9919–9986 (2014)

    Article  Google Scholar 

  56. M. Ye, Q. Zhang, Y. Hu, J. Ge, Z. Lu, L. He, Z. Chen, Y. Yin, Magnetically recoverable core–shell nanocomposites with enhanced photocatalytic activity. Chem. A 16, 6243–6250 (2010)

    Google Scholar 

  57. S. Gomez, C.L. Marchena, L. Pizzio, L. Pierella, Preparation and characterization of TiO2/HZSM-11 zeolite for photodegradation of dichlorvos in aqueous solution. J. Hazard. Mater. 258, 19–26 (2013)

    Article  Google Scholar 

  58. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B 31, 145–157 (2001)

    Article  Google Scholar 

  59. N. Zhou, L. Polavarapu, N. Gao, Y. Pan, P. Yuan, Q. Wang, Q.-H. Xu, TiO2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation. Nanoscale 5, 4236–4241 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Iran National Science Foundation (INSF) for financially supporting this research work under Contract Number of 94/sad/42699 on 9/11/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Rajabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bavarsiha, F., Rajabi, M. & Montazeri-Pour, M. Synthesis of SrFe12O19/SiO2/TiO2 composites with core/shell/shell nano-structure and evaluation of their photo-catalytic efficiency for degradation of methylene blue. J Mater Sci: Mater Electron 29, 1877–1887 (2018). https://doi.org/10.1007/s10854-017-8098-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8098-5

Navigation