Skip to main content
Log in

Effect of different solvents on the key structural, optical and electronic properties of sol–gel dip coated AZO nanostructured thin films for optoelectronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transparent conducting aluminum (i.e. 2 at.%) doped zinc oxide (AZO) thin films were prepared on glass substrates by sol–gel dip coating technique using different solvents. This inexpensive dip coating method involves dipping of substrate consecutively in zinc solution and tube furnace for required cycles. Prepared films were investigated by XRD, SEM, PL, Raman spectroscopy optical and electrical studies. From the XRD studies, it confirmed the incorporation of aluminum in ZnO lattice. The prepared samples are polycrystalline nature, and these films reveal hexagonal wurtzite arrangement with (002) direction. The structural parameters such as crystallite size, dislocation density, micro strain, texture coefficient and lattice constant were investigated. SEM study showed well defined smooth and uniformed ganglia shaped grains are regularly distributed on to the entire glass substrate without any pinholes and cracks, and the average grain size is 75 nm. From the optical studies, the observed highest transmittance is 93% in the visible range and the band gap (Eg) is 3.26 eV. Room temperature PL spectra exhibited strong UV emission peak located at 386 nm for all the films. The electrical properties of the AZO thin films were studied by Hall-Effect measurements and found as n-type conductivity with high carrier concentrations (n), 2.76 × 1019 cm− 3 and low resistivity (ρ), 7.56 × 10− 3 Ω cm for the film deposed using methanol as solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72, 1–29 (2009)

    Article  Google Scholar 

  2. Z. Zang, A. Nakamura, J. Temmyo, Optics Express 21(9), 11448–11451 (2013)

    Article  Google Scholar 

  3. Z. Zang, X. Zeng, J. Du, M. Wang, X. Tang, Opt. Lett. 41(15), 3463–3466 (2016)

    Article  Google Scholar 

  4. C. Lia, C. Hana, Y. Zhang, Z. Zanga, M. Wanga, X. Tanga, J. Dua, Sol. Energy Mater. Sol. Cells 172, 341–346 (2017)

    Article  Google Scholar 

  5. K. Ellmer, A. Klein, ZnO and its applications, in Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells, Springer Series in Materials Science, vol 104, ed. by K. Ellmer, A. Klein, B. Rech (Springer-Verlag, Berlin, 2008), pp. 1–33

    Chapter  Google Scholar 

  6. J.L. Chen, D. Chen, Z.H. Chen, Optimization of the process for preparing Al-doped ZnO thin films by sol-gel method. Sci. China Ser. E Tech. Sci. 52, 88–94 (2009)

    Article  Google Scholar 

  7. F. Ahmed, N. Arshi, M.S. Anwar, R. Danish, B.H. Koo, Thin Solid Films 547, 168–172 (2013)

    Article  Google Scholar 

  8. Y.K. Tseng, G.J. Gao, S.C. Chien, Synthesis of c-axis preferred orientation ZnO:Al transparent conductive thin films using a novel solvent method. Thin Solid Films 518, 6259–6263 (2010)

    Article  Google Scholar 

  9. Ü. Özgür, I. AlivovYa, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301:1–041301:103 (2005)

    Article  Google Scholar 

  10. C. Bundesmann, R. Schmidt-Grund, M. Schubert, Optical properties of ZnO and related compounds, in Transparent Conductive Zinc Oxide—Basics and Applications in Thin Film Solar Cells (Springer Series in Materials Science), vol 104, ed. by K. Ellmer, A. Klein, B. Rech (Springer-Verlag, Berlin, 2008), pp. 79–124

    Google Scholar 

  11. H. Von Wenckstern, H. Schmidt, M. Brandt, A. Lajn, R. Pickenhain, M. Lorenz, M. Grundmann, D.M. Hofmann, A. Polity, B.K. Meyer et al., Anionic and cationic substitution in ZnO. Prog. Solid State Chem. 37, 153–172 (2009)

    Article  Google Scholar 

  12. F. Khan, V.S.N. Singh, M. Husain, P.K. Singh, Sol-gel derived hydrogen annealed ZnO:Al films for silicon solar cell application. Sol. Energy. Mater. Sol. Cells 100, 57–60 (2012)

    Article  Google Scholar 

  13. J.I. Nomoto, T. Hirano, T. Miyata, T. Minami, Thin Solid Films 520, 1400–1406 (2011)

    Article  Google Scholar 

  14. A.C. Galca, M. Secu, A. Vlad, J.D. Pedarnig, Thin Solid Films 518, 4603 (2010)

    Article  Google Scholar 

  15. M. Farbod, M. Zargar Shoushtari, S. Parhoodeh, J Physica B 406, 205–210 (2011)

    Article  Google Scholar 

  16. W.H. Kim, W.J. Maeng, M.K. Kim, H. Kim, J. Electro. Chem. Soc. 158, D495 (2011)

    Article  Google Scholar 

  17. K. Mahmood, S.B. Park, Electron. Mater. Lett. 9, 161 (2013)

    Article  Google Scholar 

  18. K. Deva Arun Kumar, S. Valanarasu, A Study of aluminium doped ZnO (AZO) thin film by SILAR method, in Journal of Latest Research in Engineering and Technology (IJLRET), pp. 17–19 (2016)

  19. J. Zhang, W. Que, J. Solar Energy Mater. Solar Cells 94, 2181–2186 (2010)

    Article  Google Scholar 

  20. C. Boukaous, A. Telia, D. Horwat, M.S. Aida, B.B.S. Ghanem, Eur. Phys. J. Appl. Phys. 65, 20302 (2014)

    Article  Google Scholar 

  21. C. Boukaous, A. Telia, D. Horwat, S. Ghanem, P. Miska, Effect of solvents on the properties of ZnO thin layers obtained by sol gel dip coating process. J. New Technol. Mater. JNTM 04(01), 94–98 (2014)

    Article  Google Scholar 

  22. P. Mondal, D. Das, Phys. Chem. Chem. Phys. 18, 20450–20458 (2016)

    Article  Google Scholar 

  23. N.S. Sabri, A.K. Yahya, M.K. Talari, AIP Conf. Proc. 1250, 436 (2010)

    Article  Google Scholar 

  24. M. Shkir, I.S. Yahia, S. AlFaify, M.M. Abutalib, S. Muhammad, J. Mol. Struct. 1110, 83–90 (2016)

    Article  Google Scholar 

  25. M. Shkir, I.S. Yahia, V. Ganesh, H. Algarni, S. AlFaify, Mater. Lett. 176, 135–138 (2016)

    Article  Google Scholar 

  26. D. Guo, K. Satob, S. Hibinob, T. Takeuchi, H. Bessho, K. Kato, Low-temperaturepreparation of (002)-oriented ZnO thin films by sol–gel method. Thin Solid Films 550, 250–258 (2014)

    Article  Google Scholar 

  27. R. Mariappan, M. Ragavendar, V. Ponnuswamy, J. Alloys Compd. 509, 7337–7343 (2011)

    Article  Google Scholar 

  28. Z.R. Khan, M.S. Khan, M. Zulfequar, M.S. Khan, Mater. Sci. Appl. 2, 340 (2011)

    Google Scholar 

  29. C. Barret, T.B. Massalski, Structure of Metals, (Pergamon, Oxford, 1980), p. 923

    Google Scholar 

  30. M. Ren, Z. Mal, Y. Lu, The effect of the thermal annealing on ZnO thin films grown by pulsed laser deposition, J. Appl. Phys. 88(1), 498–502 (2000). doi:10.1063/1.373685

    Article  Google Scholar 

  31. C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 83, 1974–1983 (2003)

    Article  Google Scholar 

  32. G. Srinivasan, R.T. Rajendra Kumar, J. Kumar, Influence of Al dopant on microstructure and optical properties of ZnO thin films prepared by sol–gel spin coating methodOptical. Materials 30, 314–317 (2007)

    Google Scholar 

  33. N.V. Kaneva, C.D. Dushkin, A.S. Bojinova, ZnO thin films preparation on glass substrates by two different sol-gel methods. Bulgarian Chem. Commun. 44, 63–69 (2012)

    Google Scholar 

  34. V. Senthamilselvi, K. Saravanakumar, N. Jabena Begum, R. Anandhi, A.T. Ravichandran, B. Sakthivel, K. Ravichandran, J.Mater. Sci. 23, 302–308 (2012)

    Google Scholar 

  35. M. Arshad, A. Azam, A.S. Ahmed, S. Mollah, A.H. Naqvi, J. Alloy. Compd. 506, 8378–8381 (2011)

    Article  Google Scholar 

  36. M. Bouloudenine, N. Viart, S. Colis, A. Dinia, Catal. Today 113, 240–244 (2006)

    Article  Google Scholar 

  37. K. Ravichandran, R. Mohan, N. Jabena Begum, S. Snega, K. Swaminathan, C. Ravidhas, B. Sakthivel, S. Varadharajaperumal, Vacuum 107, 68–76 (2014)

    Article  Google Scholar 

  38. J. Tauc, Amorphous and Liquid Semiconductors. (Plenum Press, New York, 1974)

    Book  Google Scholar 

  39. M. Shakir, S.K. Kushwaha, K.K. Maurya, G. Bhagavannarayana, M.A. Wahab, Solid State Commun. 149, 2047–2049 (2009)

    Article  Google Scholar 

  40. M. Shkir, H. Abbas, Z.R. Khan, J. Phys. Chem. Solids 73, 1309–1313 (2012)

    Article  Google Scholar 

  41. M. Shkir, V. Ganesh, S. AlFaify, I.S. Yahia, J. Mater. Sci. 28, 10573–10581 (2017)

    Google Scholar 

  42. M. Shkir, S. Alfaify, S. Muhammad, M. Nasir, N. Vijayan, S.K. Jat, M. Zulfequar, S. Rubio, E. Dieguez, Materials Focus 4, 202–207 (2015)

    Article  Google Scholar 

  43. W.-W. Zhong, F.-M. Liu, L.-G. Cai, P. Ding, C.-C. Zhou, J. Alloys Compd. 509, 3847–3851 (2011)

    Article  Google Scholar 

  44. N. Jabena Begum, R. Mohan, K. Ravichandran, Superlatt. Micro Struct. 53, 89–98 (2013)

    Article  Google Scholar 

  45. L. Ma, S. Ma, H. Chen, X. Ai, X. Huang, Microstructuresand optical properties of Cu-doped ZnO films prepared byradio frequency reactive magnetron sputtering. Appl. Surf. Sci. 257, 10036–10041 (2011)

    Article  Google Scholar 

  46. Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl. Phys. Lett. 78, 407–409 (2001)

    Article  Google Scholar 

  47. S.C. Lyu, Y. Zhanga, H. Ruh, H.J. Lee, H.W. Shim, E.K. Suh, C.J. Lee, Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires. Chem. Phys. Lett. 363, 134–138 (2002)

    Article  Google Scholar 

  48. N.L. Tarwal, P.R. Jadhav, S.A. Vanalakar, S.S. Kalagi, R.C. Pawar, J.S. Shaikh, S.S. Mali, D.S. Dalavi, P.S. Shinde, P.S. Patil, Photoluminescence of Zinc oxide nanopowder synthesized by a combustion method. Powder Technol. 208, 185–188 (2011)

    Article  Google Scholar 

  49. R. Mariappan, V. Ponnuswamy, P. Suresh, Effect of dopingconcentration on the structural and optical properties of pureand tin doped zinc oxide thin films by nebulizer spray pyrolysistechnique. Superlattices Microstruct. 52, 500–513 (2012)

    Article  Google Scholar 

  50. Q.P. Wang, X.J. Zhang, G.Q. Wang, S.H. Chen, X.H. Wu, H.L. Ma, Influence of excitation light wavelength on the photo-luminescence properties for ZnO films prepared by magnetron sputtering. Appl. Surf. Sci. 254, 5100–5104 (2008)

    Article  Google Scholar 

  51. H.L. Shen, H. Zhang, L.F. Lu, F. Jiang, C. Yang, Progress in natural science. Mater. Int. 20, 44–48 (2010)

    Google Scholar 

  52. G. Haacke, J. Appl. Phys. 47, 4086 (1976)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to deanship of scientific research, King Khalid University, Saudi Arabia for providing the financial support under the Project Number R.G.P. 2/3/38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd. Shkir.

Ethics declarations

Conflict of interest

Authors declares that there is no conflict of interest in the current article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deva Arun Kumar, K., Ganesh, V., Shkir, M. et al. Effect of different solvents on the key structural, optical and electronic properties of sol–gel dip coated AZO nanostructured thin films for optoelectronic applications. J Mater Sci: Mater Electron 29, 887–897 (2018). https://doi.org/10.1007/s10854-017-7985-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7985-0

Navigation