Skip to main content
Log in

Synthesis and characterization of conjugated polymers containing bromide side chain

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of copolymers PC8DTBT-x (x denotes the content of brominated units) were achieved by varying the amount of the brominated carbazole. The chemical structures, electrochemical properties, optical properties and photovoltaic performance of these copolymers were well characterized. The bromide side chains don’t influent the frontier orbital levels of the conjugated polymers. The absorption coefficiency and fluorescence spectra of copolymers can be changed by the content of bromide units. Higher open circuit voltage and higher fill factor were observed in the organic solar cells using bromide-unit containing copolymers as the donor materials. When the content of bromide units reached 30%, higher absorption coefficiency and higher power conversion efficiency were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C. Liu, K. Wang, X. Gong, A.J. Heeger, Low bandgap semiconducting polymers for polymeric photovoltaics. Chem. Soc. Rev. 45(17), 4825–4846 (2016)

    Article  Google Scholar 

  2. S. Hu, X. Bao, Z. Liu, T. Wang, Z. Du, S. Wen et al., Benzothiadiazole[1,2-b:4,3-b′]dithiophene, a new ladder-type multifused block: synthesis and photovoltaic application. Org. Electron. 15(12), 3601–3608 (2014)

    Article  Google Scholar 

  3. Z. Hu, X-d Li, W. Zhang, A. Liang, D. Ye, Z. Liu et al., Synthesis and photovoltaic properties of solution-processable star-shaped small molecules with triphenylamine as the core and alkyl cyanoacetate or 3-ethylrhodanine as the end-group. RSC Adv. 4(11), 5591–5597 (2014)

    Article  Google Scholar 

  4. T. Jia, Q. Hou, K. Xiong, Q. Li, L. Hou, Synthesis and photovoltaic properties of benzo[1,2-b:3,4-b′]thiophene-based conjugated copolymers with a pendent acceptor. J. Mater. Sci. Mater. Electron. 25(4), 1639–1646 (2014)

    Article  Google Scholar 

  5. Y. Xie, Z. Peng, T. Jia, H. Zhang, Q. Hou, S. Luo et al., Triphenylamine–thiazolothiazole–benzodithiophene based conjugated copolymers for polymer solar cells. J. Mater. Sci. Mater. Electron. 27(5), 4705–4710 (2016)

    Article  Google Scholar 

  6. D. Zhou, K. Chen, X. Zhong, M. Li, Y. Qin, Y. Zhao, Novel benzo(1,2-b:4,5-b’)dithiophene-based donor–acceptor conjugated polymes for polymer solar cells. J. Mater. Sci. Mater. Electron. 27(9), 9920–9928 (2016)

    Article  Google Scholar 

  7. M. Liu, Y. Gao, Y. Zhang, Z. Liu, L. Zhao, Quinoxaline-based conjugated polymers for polymer solar cells. Polym. Chem. (2017). doi:10.1039/C7PY00850C

    Google Scholar 

  8. Y. Gao, M. Liu, Y. Zhang, Z. Liu, Y. Yang, L. Zhao, Recent development on narrow bandgap conjugated polymers for polymer solar cells. Polymers 9(2), 39 (2017)

    Article  Google Scholar 

  9. X. Gao, Y. Zhang, C. Fang, X. Cai, B. Hu, G. Tu, Efficient deep-red electroluminescent donor-acceptor copolymers based on 6,7-dichloroquinoxaline. Org. Electron. 46, 276–282 (2017)

    Article  Google Scholar 

  10. Z. Liu, L. Zhang, X. Gao, L. Zhang, Q. Zhang, J. Chen, Highly efficient green PLED based on triphenlyaminesilole-carbazole-fluorene copolymers with TPBI as the hole blocking layer. Dyes Pigments 127, 155–160 (2016)

    Article  Google Scholar 

  11. Z. Liu, L. Zhang, X. Gao, Q. Zhang, J. Chen, Synthesis and characterization of novel polymers containing aminophenylsilole. Polym. J. 48(6), 723–728 (2016)

    Article  Google Scholar 

  12. D. Ding, J. Wang, Z. Du, F. Li, W. Chen, F. Liu et al., A novel naphthyl side-chained benzodithiophene polymer for efficient photovoltaic cells with a high fill factor of 75%. J. Mater. Chem. A 5(21), 10430–10436 (2017)

    Article  Google Scholar 

  13. M. Fan, Z. Du, W. Chen, D. Liu, S. Wen, M. Sun et al., Benzodithiophene-based polymers containing alkylthiophenyl side chains with lowered HOMO energy levels for organic solar cells. Asian J. Org. Chem. 5(10), 1273–1279 (2016)

    Article  Google Scholar 

  14. K. Zhang, X-y Liu, B-w Xu, Y. Cui, M-l Sun, J.-H. Hou, High-performance fullerene-free polymer solar cells with solution-processed conjugated polymers as anode interfacial layer. Chin. J. Polym. Sci. 35(2), 219–229 (2017)

    Article  Google Scholar 

  15. J. Zhu, S. Li, X. Liu, H. Yao, F. Wang, S. Zhang et al., Subtle side-chain tuning on terminal groups of small molecule electron acceptors for efficient fullerene-free polymer solar cells. J. Mater. Chem. A 5(29), 15175–15182 (2017)

    Article  Google Scholar 

  16. J.U. Lee, J.W. Jung, T. Emrick, T.P. Russell, W.H. Jo, Synthesis of C60-end capped P3HT and its application for high performance of P3HT/PCBM bulk heterojunction solar cells. J. Mater. Chem. 20(16), 3287–3294 (2010)

    Article  Google Scholar 

  17. S. Rajaram, P.B. Armstrong, B.J. Kim, JMJ Fréchet, Effect of addition of a diblock copolymer on blend morphology and performance of poly(3-hexylthiophene):perylene diimide solar cells. Chem. Mater. 21(9), 1775–1777 (2009)

    Article  Google Scholar 

  18. Q. Wang, B. Zhang, L. Liu, Y. Chen, Y. Qu, X. Zhang et al., Effect of end groups on optoelectronic properties of poly(9,9-dioctylfluorene): a study with hexadecylfluorenes as model polymers. J. Phys. Chem. C 116(41), 21727–21733 (2012)

    Article  Google Scholar 

  19. S. Asaoka, N. Takeda, T. Iyoda, A.R. Cook, J.R. Miller, Electron and hole transport to trap groups at the ends of conjugated polyfluorenes. J. Am. Chem. Soc. 130(36), 11912–11920 (2008)

    Article  Google Scholar 

  20. S. Kappaun, H. Scheiber, R. Trattnig, E. Zojer, EJW List, C. Slugovc, Defect chemistry of polyfluorenes: identification of the origin of “interface defects” in polyfluorene based light-emitting devices. Chem. Commun. 41(41), 5170–5172 (2008)

    Article  Google Scholar 

  21. X. Chen, H.-E. Tseng, J.-L. Liao, S.-A. Chen, Green emission from end-group-enhanced aggregation in polydioctylfluorene. J. Phys. Chem. B 109(37), 17496–17502 (2005)

    Article  Google Scholar 

  22. X. Gong, W. Ma, J.C. Ostrowski, K. Bechgaard, G.C. Bazan, A.J. Heeger et al., End-capping as a method for improving carrier injection in electrophosphorescent light-emitting diodes. Adv. Funct. Mater. 14(4), 393–397 (2004)

    Article  Google Scholar 

  23. J.K. Park, J. Jo, J.H. Seo, J.S. Moon, Y.D. Park, K. Lee et al., End-capping effect of a narrow bandgap conjugated polymer on bulk heterojunction solar cells. Adv. Mater. 23(21), 2430–2435 (2011)

    Article  Google Scholar 

  24. T. Miteva, A. Meisel, W. Knoll, H.G. Nothofer, U. Scherf, D.C. Müller et al., Improving the performance of polyfluorene-based organic light-emitting diodes via end-capping. Adv. Mater. 13(8), 565–570 (2001)

    Article  Google Scholar 

  25. J.S. Kim, Y. Lee, J.H. Lee, J.H. Park, J.K. Kim, K. Cho, High-efficiency organic solar cells based on end-functional-group-modified poly(3-hexylthiophene). Adv. Mater. 22(12), 1355–1360 (2010)

    Article  Google Scholar 

  26. C. Shim, M. Kim, S.-G. Ihn, Y.S. Choi, Y. Kim, K. Cho, Controlled nanomorphology of PCDTBT-fullerene blends via polymer end-group functionalization for high efficiency organic solar cells. Chem. Commun. 48(57), 7206–7208 (2012)

    Article  Google Scholar 

  27. Y. Kim, S. Cook, J. Kirkpatrick, J. Nelson, J.R. Durrant, DDC Bradley et al., Effect of the end group of regioregular poly(3-hexylthiophene) polymers on the performance of polymer/fullerene solar cells. J. Phys. Chem. C 111(23), 8137–8141 (2007)

    Article  Google Scholar 

  28. K.-Y. Pu, Z. Fang, B. Liu, Effect of charge density on energy-transfer properties of cationic conjugated polymers. Adv Funct. Mater. 18(8), 1321–1328 (2008)

    Article  Google Scholar 

  29. Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen et al., Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater. 23(40), 4636–4643 (2011)

    Article  Google Scholar 

  30. H. Wu, F. Huang, Y. Mo, W. Yang, D. Wang, J. Peng et al., Efficient electron injection from a bilayer cathode consisting of aluminum and alcohol-/water-soluble conjugated polymers. Adv. Mater. 16(20), 1826–1830 (2004)

    Article  Google Scholar 

  31. R. Yang, H. Wu, Y. Cao, G.C. Bazan, Control of cationic conjugated polymer performance in light emitting diodes by choice of counterion. J. Am. Chem. Soc. 128(45), 14422–14423 (2006)

    Article  Google Scholar 

  32. J.H. Seo, A. Gutacker, Y. Sun, H. Wu, F. Huang, Y. Cao et al., Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. J. Am. Chem. Soc. 133(22), 8416–8419 (2011)

    Article  Google Scholar 

  33. X. Zhu, Y. Xie, X. Li, X. Qiao, L. Wang, G. Tu, Anionic conjugated polyelectrolyte-wetting properties with an emission layer and free ion migration when serving as a cathode interface layer in polymer light emitting diodes (PLEDs). J. Mater. Chem. 22(31), 15490–15494 (2012)

    Article  Google Scholar 

  34. G. Tu, H. Li, M. Forster, R. Heiderhoff, L.J. Balk, R. Sigel et al., Amphiphilic conjugated block copolymers: synthesis and solvent-selective photoluminescence quenching. Small 3(6), 1001–1006 (2007)

    Article  Google Scholar 

  35. U. Scherf, A. Gutacker, N. Koenen, All-conjugated block copolymers. Acc. Chem. Res. 41(9), 1086–1097 (2008)

    Article  Google Scholar 

  36. G. Griffini, J.D. Douglas, C. Piliego, T.W. Holcombe, S. Turri, JMJ Fréchet et al., Long-term thermal stability of high-efficiency polymer solar cells based on photocrosslinkable donor-acceptor conjugated polymers. Adv. Mater. 23(14), 1660–1664 (2011)

    Article  Google Scholar 

  37. B.J. Kim, Y. Miyamoto, B. Ma, JMJ Fréchet, Photocrosslinkable polythiophenes for efficient, thermally stable, organic photovoltaics. Adv. Funct. Mater. 19(14), 2273–2281 (2009)

    Article  Google Scholar 

  38. J.E. Carle, B. Andreasen, T. Tromholt, M.V. Madsen, K. Norrman, M. Jorgensen et al., Comparative studies of photochemical cross-linking methods for stabilizing the bulk hetero-junction morphology in polymer solar cells. J. Mater. Chem. 22(46), 24417–24423 (2012)

    Article  Google Scholar 

  39. X. Chen, L. Chen, Y. Chen, The effect of photocrosslinkable groups on thermal stability of bulk heterojunction solar cells based on donor–acceptor-conjugated polymers. J. Polym. Sci. A 51(19), 4156–4166 (2013)

    Article  Google Scholar 

  40. D. Qian, Q. Xu, X. Hou, F. Wang, J. Hou, Tan Za. Stabilization of the film morphology in polymer: fullerene heterojunction solar cells with photocrosslinkable bromine-functionalized low-bandgap copolymers. J. Polym. Sci. A 51(15), 3123–3131 (2013)

    Article  Google Scholar 

  41. M. Lanzi, E. Salatelli, F.P. Di-Nicola, L. Zuppiroli, F. Pierini, A new photocrosslinkable oligothiophene for organic solar cells with enhanced stability. Mater. Chem. Phys. 186, 98–107 (2016)

    Article  Google Scholar 

  42. R. Qin, W. Li, C. Li, C. Du, C. Veit, H.-F. Schleiermacher et al., A planar copolymer for high efficiency polymer solar cells. J. Am. Chem. Soc. 131(41), 14612–14613 (2009)

    Article  Google Scholar 

  43. A.W. Freeman, M. Urvoy, M.E. Criswell, Triphenylphosphine-mediated reductive cyclization of 2-nitrobiphenyls: a practical and convenient synthesis of carbazoles. J. Org. Chem. 70(13), 5014–5019 (2005)

    Article  Google Scholar 

  44. A. Tomkeviciene, J.V. Grazulevicius, V. Jankauskas, High hole mobilities in the amorphous films of 2,7-di(9-carbazolyl)-9-(2-ethylhexyl)carbazole. Chem. Lett. 37(3), 344–345 (2008)

    Article  Google Scholar 

  45. Y. Fu, Z. Bo, Synthesis, optical, and electrochemical properties of the high-molecular-weight conjugated polycarbazoles. Macromol. Rapid Commun. 26(21), 1704–1710 (2005)

    Article  Google Scholar 

  46. M. Helgesen, S.A. Gevorgyan, F.C. Krebs, RAJ Janssen, Substituted 2,1,3-benzothiadiazole- and thiophene-based polymers for solar cells: introducing a new thermocleavable precursor. Chem Mater 21(19), 4669–4675 (2009)

    Article  Google Scholar 

  47. J. Hu, D. Zhang, S. Jin, SZD Cheng, F.W. Harris, Synthesis and properties of planar liquid-crystalline bisphenazines. Chem. Mater. 16(24), 4912–4915 (2004)

    Article  Google Scholar 

  48. J. Bouffard, T.M. Swager, Fluorescent conjugated polymers that incorporate substituted 2,1,3-benzooxadiazole and 2,1,3-benzothiadiazole units. Macromolecules 41(15), 5559–5562 (2008)

    Article  Google Scholar 

  49. Y. Zhong, J. Ma, K. Hashimoto, K. Tajima, Electric field-induced dipole switching at the donor/acceptor interface in organic solar cells. Adv. Mater. 25(7), 1071–1075 (2013)

    Article  Google Scholar 

  50. Y. Yuan, T.J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman et al., Efficiency enhancement in organic solar cells with ferroelectric polymers. Nat. Mater. 10(4), 296–302 (2011)

    Article  Google Scholar 

  51. J.M. Lobez, T.L. Andrew, V. Bulović, T.M. Swager, Improving the performance of P3HT–fullerene solar cells with side-chain-functionalized poly(thiophene) additives: a new paradigm for polymer design. ACS Nano 6(4), 3044–3056 (2012)

    Article  Google Scholar 

  52. A. Tada, Y. Geng, Q. Wei, K. Hashimoto, K. Tajima, Tailoring organic heterojunction interfaces in bilayer polymer photovoltaic devices. Nat. Mater. 10(6), 450–455 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supports from youth project of Hubei provincial department of education (Q20171501) and science foundation of Wuhan Institute of Technology (k201629).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Shen, J., Chen, B. et al. Synthesis and characterization of conjugated polymers containing bromide side chain. J Mater Sci: Mater Electron 28, 18049–18056 (2017). https://doi.org/10.1007/s10854-017-7748-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7748-y

Navigation